【题目】已知函数,其中.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)设.若在上恒成立,求实数的最大值.
【答案】(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).
【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;
(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.
(Ⅰ)函数的定义域为.
当时,.
令,解得(舍去),.
当时,,所以,函数在上单调递减;
当时,,所以,函数在上单调递增.
因此,函数的单调递减区间为,单调递增区间为;
(Ⅱ)由题意,可知在上恒成立.
(i)若,,,
,
构造函数,,则,
,,.
又,在上恒成立.
所以,函数在上单调递增,
当时,在上恒成立.
(ii)若,构造函数,.
,所以,函数在上单调递增.
恒成立,即,,即.
由题意,知在上恒成立.
在上恒成立.
由(Ⅰ)可知,
又,当,即时,函数在上单调递减,
,不合题意,,即.
此时
构造函数,.
,
,,
,
恒成立,所以,函数在上单调递增,恒成立.
综上,实数的最大值为
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1的极坐标方程是,在以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为(θ为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程;
(2)将曲线C2经过伸缩变换后得到曲线C3,若M,N分别是曲线C1和曲线C3上的动点,求|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于、两点,交抛物线的准线于点,其中,.过点作轴的垂线交抛物线于点,直线交抛物线于点.
(1)求的值;
(2)求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求直线的直角坐标方程与曲线的普通方程;
(Ⅱ)已知点设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有多年.龙眼干的级别按直径的大小分为四个等级,其中直径在区间为特级品,在的为一级品,在的为二级品,在的为三级品,某商家为了解某农场一批龙眼干的质量情况,随机抽取了个龙眼干作为样本(直径分布在区间),统计得到这些龙眼干的直径的频数分布表如下:
频数 | 1 | 29 | 7 |
用分层抽样的方法从样本的一级品和特级品中抽取个,其中一级品有个.
(1)求、的值,并估计这些龙眼干中特级品的比例;
(2)已知样本中的个龙眼干约克,该农场有千克龙眼干待出售,商家提出两种收购方案:
方案A:以元/千克收购;
方案B:以级别分装收购,每袋个,特级品元/袋、一级品元/袋、二级品元/袋、三级品元/袋.用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,为两个平面,命题:的充要条件是内有无数条直线与平行;命题:的充要条件是内任意一条直线与平行,则下列说法正确的是( )
A.“”为真命题B.“”为真命题
C.“”为真命题D.“”为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com