分析 画出可行域,利用C:(x-4)2+(y-3)2=4与区域Ω有公共点S取得最小值时,直线与圆相切,求出k的值,然后求解面积为S的最小值.
解答 解:不等式$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$,(其中k>0)在平面直角坐标系中所表示的区域为Ω,如图:
在平面直角坐标系中所表示的区域为Ω,C:(x-4)2+(y-3)2=4与区域Ω有公共点,S取得最小值时,
直线与圆相切,则
可得:$\frac{3}{\sqrt{1+{k}^{2}}}$=2,k>0,k=$\frac{\sqrt{5}}{2}$,
∴S=$\frac{1}{2}×4×2\sqrt{5}$=4$\sqrt{5}$.
故答案为4$\sqrt{5}$.
点评 本题考查简单的线性规划,考查直线与圆的位置关系,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 函数g(x)在区间$[{0,\frac{π}{2}}]$上单调递增 | B. | 函数f(x)与g(x)的最小正周期均为π | ||
C. | 函数g(x)在区间$[{0,\frac{π}{2}}]$上的最大值为$\frac{{\sqrt{3}}}{2}$ | D. | 函数g(x)的对称中心为$({\frac{Kπ}{2}+\frac{π}{6},0})$(K∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x>-2} | B. | {x|x<-2} | C. | {x|x>-1} | D. | {x|x≤-2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com