【题目】设函数,若,使得直线的斜率为0,则的最小值为( )
A. -8 B. C. -6 D. 2
【答案】C
【解析】函数f(x)=﹣x2﹣6x+m,
对称轴x=﹣3,开口向下,
当x∈[﹣5,﹣2]的值域M:f(﹣5)≤M≤f(﹣3),即m+5≤M≤9+m.
函数g(x)=2x3+3x2﹣12x﹣m,
则g′(x)=6x2+6x﹣12.
令g′(x)=0,
可得:x=﹣2或1.
当x∈(﹣∞,﹣2)和(1,+∞)时,g′(x)>0,则g(x)是递增函数.
当x∈(﹣2,1)时,g′(x)<0,则g(x)是递减函数.
∵x∈[﹣1,2]
∴g(1)min=﹣7﹣m
g(﹣1)=13﹣m,g(2)=4﹣m.
∴g(x)值域N:﹣7﹣m≤N≤13﹣m.
由题意,MN
则,
解得:2≥m≥﹣6.
∴m的最小值为﹣6.
故选:C.
科目:高中数学 来源: 题型:
【题目】如图,矩形中, , 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:
①是定值;②点在某个球面上运动;
③存在某个位置,使;④存在某个位置,使平面.
其中正确的命题是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点到定点的距离比它到直线的距离小1,设动点的轨迹为曲线,过点的直线交曲线于、两个不同的点,过点、分别作曲线的切线,且二者相交于点.
(1)求曲线的方程;
(2)求证: ;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过点,,且圆心在直线上,过点作直线与圆:交于两点,.
(1)求圆的方程;
(2)当时,若于圆交于,且,求直线的方程;
(3)若点恰好是线段的中点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。
(1)求第3、4、5组的频率;
(2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若曲线C上任意一点与直线上任意一点的距离都大于1,则称曲线C远离”直线,在下列曲线中,“远离”直线:y=2x的曲线有___________(写出所有符合条件的曲线的编号)
①曲线C:;②曲线C:;③曲线C:;
④曲线C:;⑤曲线C:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:
具体过程如下:
如图,在平面直角坐标系内作单位圆O,以为始边作角.它们的终边与单位圆O的交点分别为A,B.
则
由向量数量积的坐标表示,有:
设的夹角为θ,则
另一方面,由图3.1—3(1)可知,;由图可知,
.于是.
所以,也有,
所以,对于任意角有:()
此公式给出了任意角的正弦、余弦值与其差角的余弦值之间的关系,称为差角的余弦公式,简记作.
有了公式以后,我们只要知道的值,就可以求得的值了.
阅读以上材料,利用下图单位圆及相关数据(图中M是AB的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题:
(1)判断是否正确?(不需要证明)
(2)证明:
(3)利用以上结论求函数的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com