【题目】已知函数.
(1)若函数在时取得极值,求实数的值;
(2)若对任意恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),直线与直线平行,且过坐标原点,圆的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求直线和圆的极坐标方程;
(2)设直线和圆相交于点、两点,求的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,左、右顶点分别为、,线段的长为4.点在椭圆上且位于第一象限,过点,分别作,,直线,交于点.
(1)若点的横坐标为-1,求点的坐标;
(2)直线与椭圆的另一交点为,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前n项中最大值为,最小值为,令,数列的前n项和为,数列的前n项和为.
(1)若数列是首项为2,公比为2的等比数列,求;
(2)若数列是等差数列,试问数列是否也一定是等差数列?若是,请证明;若不是,请举例说明;
(3)若,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:
符合的点的轨迹围成的图形面积为8;
设点是直线:上任意一点,则;
设点是直线:上任意一点,则使得“最小的点有无数个”的充要条件是;
设点是椭圆上任意一点,则.
其中正确的结论序号为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:
符合的点的轨迹围成的图形面积为8;
设点是直线:上任意一点,则;
设点是直线:上任意一点,则使得“最小的点有无数个”的必要条件是;
设点是圆上任意一点,则.
其中正确的结论序号为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:),身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;
(2)若从身高以上(包括)的志愿者中选出男、女各一人,设这2人身高相差(),求的分布列和数学期望(均值).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com