精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn} 的前n项和Sn

【答案】
(1)解:设等差数列{ an}的公差为d,等比数列{ bn}的公比为q,则根据题意,得

代入a1=b1=1,整理得

消去d,得 2q4﹣q2﹣28=0,即q2=4,进而q=2,q=﹣2(舍去).

所以 d=2.

数列{ an},{ bn}的通项公式分别为an=2n﹣1,bn=2n1


(2)解:因为 an+bn=2n﹣1+2n1,所以由分组求和的办法,可得
【解析】(1)利用条件求数列的首项和公差,公比,然后求等差数列和等比数列的通项公式.(2)利用分组法求数列{an+bn} 的前n项和Sn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于( )

A.m
B.m
C.m
D.m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本
中,青年教师有320人,则该样本的老年教师人数为( )

A.90
B.100
C.180
D.300

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果若干个函数的图象经过平移后能够重合,则称这些函数“互为生成”函数,给出下列函数:
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互为生成的函数是(
A.①②
B.①③
C.③④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式mx2﹣(1﹣m)x+m≥0的解集为R,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项为a,公差为b,且不等式ax2﹣3x+2>0的解集为(﹣∞,1)∪(b,+∞)
(1)求数列{an}的通项公式
(2)设数列{bn}满足= ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=1时,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范围;
(3)若关于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,函数的导函数为.

(1)求函数的极值.

(2)若.

(i)求函数的单调区间;

(ii)求证: 时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且 a=2csinA.
(1)确定角C的大小;
(2)若c=3,且△ABC的面积为 ,求a2+b2的值.

查看答案和解析>>

同步练习册答案