精英家教网 > 高中数学 > 题目详情

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

【答案】(1);(2)

【解析】

(1)∵∴AB,又B中最多有两个元素,∴A=B,从而得到实数的值;(2)求出集合A、B的元素,利用B是A的子集,即可求出实数a的范围.

(1)∵∴AB,又B中最多有两个元素,

∴A=B,

x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,

故a=1;

(2)∵A={x|x2+4x=0,x∈R}

∴A={0,﹣4},

∵B={x|x2+2(a+1)x+a2﹣1=0},且BA.

①B=时,△=4(a+1)2﹣4(a2﹣1)<0,即a﹣1,满足BA;

②B≠时,当a=﹣1,此时B={0},满足BA;

当a﹣1时,x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的两个根,

故a=1;

综上所述a=1或a≤﹣1;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,对称轴是轴,且过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)已知斜率为的直线轴于点,且与曲线相切于点,点在曲线上,且直线轴, 关于点的对称点为,判断点是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在约束条件 下,当t≥0时,其所表示的平面区域的面积为S(t),S(t)与t之间的函数关系用下列图象表示,正确的应该是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①的乘积成正比;②当时, ,并且技术改造投入比率 为常数且

1)求的解析式及其定义域;

2)求的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是  

①函数f(x)的最大值为1; ②函数f(x)的最小值为0;

③方程有无数个根; ④函数f(x)是增函数.

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C (ab>0)的一条准线方程为x离心率为

(1)求椭圆C的方程;

(2)如图,设A为椭圆的上顶点,过点A作两条直线AMAN分别与椭圆C相交于MN两点,且直线MN垂直于x

设直线AMAN的斜率分别是k1 k2,求k1k2的值

M作直线l1AM,过N作直线l2ANl1l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论的单调性;

(2)若在点处的切线方程为,若对任意的

恒有,求的取值范围(是自然对数的底数)。

查看答案和解析>>

同步练习册答案