精英家教网 > 高中数学 > 题目详情

的单调递增区间为(      )

A.(-∞,1)       B.(2,+∞)        C.(-∞,)      D.(,+∞)

 

【答案】

A

【解析】

试题分析:由得:

,因为,所以的单调递增区间为(-∞,1)。

考点:复合函数的单调性。

点评:判断复合函数的单调性,只需要满足四个字:同增异减,但一定要注意先求函数的定义域。本题易错的地方是:忘记求定义域而导致选错误答案C。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
12
x2+x
,g(x)=2a2lnx+(a+1)x.
(1)求过点(2,4)与曲线y=f(x)相切的切线方程;
(2)如果函数g(x)在定义域内存在导数为零的点,求实数a的取值范围;
(3)设h(x)=f(x)-g(x),求函数h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期第三次月考理科数学 题型:解答题

(本小题满分12分)

已知向量,函数·

(1)求函数f(x)的单调递增区间;

(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函

数f(x)的值域.

 

查看答案和解析>>

科目:高中数学 来源:2007-2008学年浙江省宁波市柔石中学高三(上)月考数学试卷3(解析版) 题型:解答题

已知函数,g(x)=2a2lnx+(a+1)x.
(1)求过点(2,4)与曲线y=f(x)相切的切线方程;
(2)如果函数g(x)在定义域内存在导数为零的点,求实数a的取值范围;
(3)设h(x)=f(x)-g(x),求函数h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:解答题

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

同步练习册答案