精英家教网 > 高中数学 > 题目详情
10.函数f(x)=ax+loga(x+2)在[0,1]上的最大值与最小值之和为a,则a=$\frac{1}{6}$.

分析 根据函数f(x)在[0,1]上为单调函数,结合题意可得:f(0)+f(1)=(1+loga2)+(a+loga3)=a,由此求得a的值.

解答 解:当a>1时,y=ax和y=loga(x+2)都为增函数,即有y=f(x)为增函数;
当0<a<1时,y=ax和y=loga(x+2)都为减函数,即有y=f(x)为减函数.
故函数f(x)=ax+loga(x+2)(a>0,且a≠1)在[0,1]上必为单调函数,
由于f(x)在[0,1]上的最大值与最小值之和为a,
故有 f(0)+f(1)=(1+loga2)+(a+loga3)=a,
解得a=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题主要考查指数函数和对数函数的单调性的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知正六棱台的上、下底面边长分别为2、8,侧棱长等于9,求这个棱台的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设 P点在圆x2+(y-2)2=1上移动,点Q在椭圆$\frac{x^2}{9}+{y^2}=1$上移动,则|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,则如图(2)的图象对应的函数可能是五个式子中的(  )
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x2+y2=4x,则x2+y2的取值范围是[0,16].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在一次射击训练中,某战士连续射击了两次.设命题p是“第一次射击击中目标”,q是“第二次射击击中目标”.则命题“两次都没有击中目标”用p,q及逻辑联结词可以表示为¬p∧¬q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求成绩在[40,50)分的学生有几名?
(2)求第四小组的频率,并补全频率分布直方图;
(3)估计这次考试的及格率(60分以上为及格)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a-x+b的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{x+2}{2x},x≥2}\end{array}\right.$,若0<a<b<c,满足f(a)=f(b)=f(c),则$\frac{ab}{f(c)}$的范围为(1,2).

查看答案和解析>>

同步练习册答案