精英家教网 > 高中数学 > 题目详情

【题目】设函数上有定义,实数满足.在区间上不存在最小值,则称在区间上具有性质P.

1)当,且在区间上具有性质P,求常数C的取值范围;

2)已知,且当时,,判别在区间上是否具有性质P

3)若对于满足的任意实数在区间上具有性质P,且对于任意,当时,有:,证明:当时,.

【答案】1;(2)具有性质;(3)证明见解析.

【解析】

1)由对称轴可得;

2)求出上的函数解析式,判断出函数在上后一个区间上的函数值都比前一个区间上的函数值大,从而函数最小值(如果有)只能在第一个区间上取得,但在上函数无最小值,因此可得出结论;

3)由绝对值的性质知,即夹在之间,如果,则上有最小值,不具有性质,与已知矛盾,从而只能是,然后只要说明对任意的,一定有,则必有,而,因此结论显然成立.

1,对称轴,当时,是最小值,当时,是最小值,只有当,即时,是递增,无最小值;

2时,,同理时,

,易知当时,是最大值,而对任意的,都有恒成立,

时,若有最小值,则只有在时取得,但当时,是减函数,无最小值,∴上无最小值,具有性质

(3)对于任意,当时,

有:,

成立,则上有最小值,不具有性质,不合题意,所以只有

显然有

则对任意的,则一定存在,使得

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》是由CCTV-10自主研发的一档大型文化益智节目,以“赏中华诗词,寻文化基因品生活之美”为宗旨,带动全民重温经典、从古人的智慧和情怀中汲取营养、涵养心灵,节目广受好评还因为其颇具新意的比赛规则:每场比赛,106位挑战者全部参赛,分为单人追逐赛和擂主争霸赛两部分单人追逐赛的最终优胜者作为攻擂者与守擂擂主进行比拼,竞争该场比赛的擂主,擂主争霸赛以抢答的形式展开,共九道题,抢到并回答正确者得一分,答错则对方得一分,先得五分者获胜,成为本场擂主,比赛结束已知某场擂主争霸赛中,攻擂者与守擂擂主都参与每一次抢题且两人抢到每道题的概率都是,攻擂者与守擂擂主正确回答每道题的概率分别为,,且两人各道题是否回答正确均相互独立.

1)比赛开始,求攻擂者率先得一分的概率;

2)比赛进行中,攻擂者暂时以领先,设两人共继续抢答了道题比赛结束,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S-ABCD中,四边形ABCD是菱形,,点PQM分别是线段SDPDAP的中点,点N是线段SB上靠近B的四等分点.

1)若R在直线MQ上,求证:平面ABCD

2)若平面ABCD,求平面SAD与平面SBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2x的焦点,点AB在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面均是等腰直角三角形,分别为的中点.

)求证:平面

)求证:

)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为等边三角形,为等腰直角三角形,,平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asinωx+φ)(A0ω0|φ|)的部分图象如图所示.

(Ⅰ)写出函数fx)的解析式及x0的值;

(Ⅱ)求函数fx)在区间[]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序号

1

2

3

4

5

6

7

8

9

10

工业增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依据表格数据,得到下面的散点图及一些统计量的值.

5.5

20.6

82.5

211.52

129.6

(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).

(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);

(3)预测到哪一年的工业增加值能突破30万亿元大关.

附:样本 的相关系数

.

查看答案和解析>>

同步练习册答案