精英家教网 > 高中数学 > 题目详情
20.已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=1;若l1∥l2,则两直线间的距离为$\frac{7\sqrt{2}}{4}$.

分析 ①由l1⊥l2,则-$\frac{2}{-2}$×$(-\frac{1}{b})$=-1,解得b.
②若l1∥l2,则-$\frac{2}{-2}$=-$\frac{1}{b}$,解得b.利用平行线之间的距离公式即可得出.

解答 解:①∵l1⊥l2,则-$\frac{2}{-2}$×$(-\frac{1}{b})$=-1,解得b=1.
②若l1∥l2,则-$\frac{2}{-2}$=-$\frac{1}{b}$,解得b=-1.∴两条直线方程分别为:x-y+$\frac{1}{2}$=0,x-y-3=0.
则两直线间的距离=$\frac{|-3-\frac{1}{2}|}{\sqrt{2}}$=$\frac{7\sqrt{2}}{4}$.
故答案为:1,$\frac{7\sqrt{2}}{4}$.

点评 本题考查了平行与相互垂直的充要条件和平行线之间的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设有序集合对(A,B)满足:A∪B={1,2,3,4,5,6,7,8},A∩B=∅,记CardA,CardB分别表示集合A、B的元素个数,则符合条件CardA∉A,CardB∉B的集合的对数是44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最大值,无最小值B.无最大值,有最小值
C.有最大值,有最小值D.无最大值,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明1+2+22+…+2n+1=2n+2-1(n∈N*)的过程中,在验证n=1时,左端计算所得的项为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0处的导数值为(  )
A.0B.1002C.200D.100×99×…×2×1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3})+cos2x+a$,x∈R.
(1)求函数f(x)的最小正周期;
(2)当$x∈[-\frac{π}{4},\frac{π}{4}]$时,恒有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设方程f(x,y)=0的解集非空.如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,有下面5个命题:
①坐标满足f(x,y)=0的点都不在曲线C上;
②曲线C上的点的坐标都不满足f(x,y)=0;
③坐标满足f(x,y)=0的点不都在曲线C上;
④一定有不在曲线C上的点,其坐标满足f(x,y)=0;
⑤坐标满足f(x,y)=0的点有些在曲线C上,有些不在曲线C上.
则上述命题正确的是③④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}Q}$=$\overrightarrow 0$.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A,Q,F2三点的圆恰好与直线$\sqrt{7}$x-y+$\sqrt{7}$+$4\sqrt{2}$=0相切,求椭圆C的方程;
(Ⅲ)过F2的直线L与(Ⅱ)中椭圆C交于不同的两点M、N,则△F1MN的内切圆的面积是否存    在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>0,y>0,且x2-2xy+4y2=1.
(Ⅰ)求证:x+2y≤2;
(Ⅱ)求y的取值范围.

查看答案和解析>>

同步练习册答案