【题目】现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有( )
A. 144种 B. 72种 C. 64种 D. 84种
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,已知曲线C的参数方程为 (α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ﹣ )=2
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.
(Ⅰ)若两个球颜色不同,求不同取法的种数;
(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有4个不同的球,4个不同的盒子,把球全部放入盒子内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,真命题的序号有 .(写出所有真命题的序号)
①若,则“”是“”成立的充分不必要条件;
②命题“使得”的否定是“均有”;
③命题“若,则或”的否命题是“若,则”;
④函数在区间上有且仅有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的单调函数f(x)满足对任意的x1 , x2 , 都有f(x1+x2)=f(x1)+f(x2)成立.若正实数a,b满足f(a)+f(2b﹣1)=0,则 的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直线的右焦点,且交椭圆于两点,点在直线上的射影依次为点.
(Ⅰ)已知抛物线的焦点为椭圆的上顶点。
①求椭圆的方程;
②若直线交轴于点,且,当变化时,求的值;
(Ⅱ)连接,试探索当变化时,直线是否相交于一定点?若交于定点,请求出点的坐标并给予证明;否则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com