精英家教网 > 高中数学 > 题目详情
11.如果loga2<1ogb2<0,那么a,b的关系及范围.

分析 直接利用对数的运算性质化简得答案.

解答 解:∵loga2<1ogb2<0,
∴$\frac{lg2}{lga}<\frac{lg2}{lgb}<0$,即$\frac{1}{lga}<\frac{1}{lgb}<0$,
∴lgb<lga<0,则0<b<a<1.

点评 本题考查对数不等式的解法,考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是各项均为正数的等差数列,首项a1=1,其前n项和为Sn;数列{bn}是等比数列,首项b1=2,且b2S2=16,b3S3=72.
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}=\frac{S_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的通项公式为an=pn3+qn+2,且a2=4,a3=20,则a5=112.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求证:1+$\frac{1}{{3}^{2}}$+$\frac{1}{{5}^{2}}$+…+$\frac{1}{(2n-1)^{2}}$>$\frac{7}{6}$-$\frac{1}{2(2n-1)}$(n≥2)
(2)求证:$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+…+$\frac{1}{4{n}^{2}}$<$\frac{1}{2}$-$\frac{1}{4n}$
(3)求证:$\frac{1}{2}$+$\frac{1•3}{2•4}$+$\frac{1•3•5}{2•4•6}$+…+$\frac{1•3•5…(2n-1)}{2•4•6…2n}$<$\sqrt{2n+1}$-1
(4)求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<$\sqrt{2}$($\sqrt{2n+1}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.试说明y=sin2x与y=sin2x的图象之间有什么样的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,已知a3=8,且满足a10>21,a12<27,若d∈Z,求公差d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在周长为60πcm的圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B、C、D在圆周上.
(Ⅰ)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积;
(Ⅱ)若将所截得的矩形铝皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求适合方程tan(19x)°=$\frac{cos99°+sin99°}{cos99°-sin99°}$的最小正整数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD中,底面ABCD是边长为 4的菱形,PD=PB=4,∠BAD=60°,E为PA中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求证:平面EBD⊥平面PAC;
(Ⅲ)若PA=PC,求三棱锥C-ABE的体积.

查看答案和解析>>

同步练习册答案