精英家教网 > 高中数学 > 题目详情

(12分)已知函数对于任意的满足.
(1)求的值;
(2)求证:为偶函数;
(3)若上是增函数,解不等式

(1)
(2)证明:见解析;
(3)x∈[-1,0)∪(0,2]∪[3,5)∪(5,6]。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数同时满足:
①对于任意的,总有;         ②
③若,则有成立。
的值;
的最大值;
若对于任意,总有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知幂函数为偶函数,且在区间上是单调递减函数,
⑴求函数的解析式;
⑵讨论函数的奇偶性。 (12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
判断并证明函数上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(附加题)本小题满分10分
已知是定义在上单调函数,对任意实数有:时,.
(1)证明:
(2)证明:当时,
(3)当时,求使对任意实数恒成立的参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(16分)已知函数是定义在上的奇函数,且当时,
(1)当时,求函数的解析式;
(2)若函数为单调递减函数;
①直接写出的范围(不必证明);
②若对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的%.现有三个奖励模型:,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,求函数上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(1)求函数的定义域;
(2)求函数的值域;

查看答案和解析>>

同步练习册答案