已知函数,等比数列的前n项和为,数列的前n项为,且前n项和满足.
(1)求数列和的通项公式:
(2)若数列前n项和为,问使的最小正整数n是多少?
(1),;(2)252.
解析试题分析:(1)由已知得当时,,则等比数列的公比,又,解得,由等比数列通项公式可得所求数列的通项公式;由已知可先求出数列的通项公式,再求的通项公式,因为,且,所以是首项为1,公差为1的等差数列,则,即,从而,又,故数列的通项公式为;(2)由数列的通项公式可采用裂项求和法先求出前项和,从而可得,故满足条件的最小正整数是252.
(1)因为等比数列的前项和为,
则当时,.
因为是等比数列,所以的公比. 2分
,解得.. 4分
由题设知的首项,其前项和满足,
由,且.
所以是首项为1,公差为1的等差数列. 6分
,.,又.
故数列的通项公式为. 8分
(2)因为,所以. 10分
. 12分
要使,则.所以.
故满足条件的最小正整数是252. 14分
考点:1.数列通项公式;2.数列列前项和公式.
科目:高中数学 来源: 题型:解答题
(13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若数列满足条件:存在正整数,使得对一切都成立,则称数列为级等差数列.
(1)已知数列为2级等差数列,且前四项分别为,求的值;
(2)若为常数),且是级等差数列,求所有可能值的集合,并求取最小正值时数列的前3项和;
(3)若既是级等差数列,也是级等差数列,证明:是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通项公式.
(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N﹡.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com