精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为平行四边形, 底面.

(1)证明:

(2)设,求点到面的距离.

【答案】(1)见解析(2)

【解析】试题分析:()要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.,因此要证平面,从而只要证,这在中可证;()要求点到平面的距离,可过点作平面的垂线,由()的证明,可得平面,从而有平面,因此平面平面,因此只要过,则就是的要作的垂线,线段的长就是所要求的距离.

试题解析:()证明:因为

由余弦定理得.

从而

又由底面,可得.

所以平面..

)解:作,垂足为.

已知底面,则

由()知,又,所以.

平面.

平面.

由题设知, ,则

根据,得

即点到面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学(文)】已知双曲线的左右两个顶点是 ,曲线上的动点关于轴对称,直线 交于点

(1)求动点的轨迹的方程;

(2)点,轨迹上的点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】路灯距地面8 m,一个身高为1.6 m的人以84 m/min的速度在地面上从路灯在地面上射影点C沿某直线离开路灯.

(1)求身影的长度y与人距路灯的距离x之间的关系式;

(2)求人离开路灯的第一个10 s内身影的平均变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,⊥平面,且四边形是平行四边形.

(1)求证:

(2)当点的什么位置时,使得∥平面,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.

(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在四棱锥中, 是线段的中点.

(1)求证: 平面

(2)若,平面平面,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形中, ,如图1所示,将沿折起到的位置,如图2所示.

(1)当平面平面时,求三棱锥的体积;

(2)在图2中, 的中点,若线段,且平面,求线段的长;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1F2分别是椭圆C的左、右焦点A是椭圆C的顶点B是直线AF2与椭圆C的另一个交点F1AF2=60°.

(1)求椭圆C的离心率;

(2)已知△AF1B的面积为40ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角,A,B,C对边的边长分别为a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.

查看答案和解析>>

同步练习册答案