精英家教网 > 高中数学 > 题目详情
1.计算:
(1)lg1000+log9$\frac{1}{81}$;
(2)log0.41+$\frac{1}{2}$log0.40.16;
(3)log3.333-log3.310;
(4)log5(25×53);
(5)lne-2

分析 根据对数的运算性质计算即可.

解答 解:(1)lg1000+log9$\frac{1}{81}$=3+(-2)=1;
(2)log0.41+$\frac{1}{2}$log0.40.16=0+1=1;
(3)log3.333-log3.310=log3.33.3=1;
(4)log5(25×53)=log555=5;
(5)lne-2=-2.

点评 本题考查了对数的运算性质,关键是掌握运算法则,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在长为10千米的河流OC的一侧有一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数y=ax2+bx+c(a≠0),x∈[0,6](单位:千米)的图象,且图象的最高点为A(4,4);观光带的后一部分为线段BC.
(1)求函数为曲线段OABC的函数y=f(x),x∈[0,10]的解析式;
(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP,PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:${y_1}=3\sqrt{2}sin({100πt}),{y_2}=3cos({100πt+\frac{π}{4}})$,则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.6C.$3\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C是顶点在原点,以y轴为对称轴的抛物线,过抛物线的焦点且垂直于y轴的直线l被抛物线截得的弦长为8,则抛物线的焦点到顶点的距离为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量$\overrightarrow{i}$、$\overrightarrow{j}$作为基底.任作一个向量$\overrightarrow{a}$,由平面向量基本定理知,有且只有一对实数x、y,使得
$\overrightarrow{a}=x\overrightarrow{i}+y\overrightarrow{j}$…①
我们把(x,y)叫做向量$\overrightarrow{a}$的(直角)坐标,,记作$\overrightarrow{a}$=(x,y)…②
其中x叫做$\overrightarrow{a}$在x轴上的坐标,y叫做$\overrightarrow{a}$在y轴上的坐标,②式叫做向量的坐标也为(x,y).特别地,$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{0}$=(0,0).
如图,在直角坐标平面内,以原点O为起点作$\overrightarrow{OA}$=$\overrightarrow{a}$,则点A的位置由a唯一确定.
设$\overrightarrow{OA}=x\overrightarrow{i}+y\overrightarrow{j}$,则向量$\overrightarrow{OA}$的坐标(x,y)就是点A的坐标;反过来,点A是坐标(x,y)也是向量$\overrightarrow{OA}$的坐标.因此,在平面直角坐标系中,每一个平面向量都是可以用一对实数唯一表示.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{3}{2}$.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)已知a,b,c分别为△ABC的内角A,B,C的对边,A为锐角,a=2$\sqrt{3}$,c=4,且f(A)是f(x)在[0,$\frac{π}{2}$]上的最大值,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)=$\frac{alnx}{x+1}$+$\frac{b}{x}$在点(1,f(1))处的切线方程为x+2y-3=0.设h(x)=(x+1)f(x),求函数h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线x+$\sqrt{3}$y-3=0与x=2之间的夹角是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.f(x)=log2(4x)•log2(2x),0.25≤x≤4,求f(x)的最值,并写出最值时对应x的值.

查看答案和解析>>

同步练习册答案