精英家教网 > 高中数学 > 题目详情

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.应国务院要求,黑龙江某医院选派医生参加援鄂医疗,该院呼吸内科有3名男医生,2名女医生,其中李亮(男)为科室主任;该院病毒感染科有2名男医生,2名女医生,其中张雅(女)为科室主任,现在院方决定从两科室中共选4人参加援鄂医疗(最后结果用数字表达).

1)若至多有1名主任参加,有多少种派法?

2)若呼吸内科至少2名医生参加,有多少种派法?

3)若至少有1名主任参加,且有女医生参加,有多少种派法?

【答案】1105种(2105种(387种.

【解析】

1)至多有1名主任参加,包括两种情况:一种是无主任参加,另一种是只有1名主任参加,利用分类计数原理可得结果;

2)呼吸内科至少2名医生参加,分三种情况:第一种是呼吸内科2名医生参加,第二种呼吸内科3名医生参加,第三种呼吸内科4名医生参加,然后利用分类计数原理可得结果;

3)由于张雅既是主任,也是女医生.属于特殊元素,优先考虑,分有张雅和无张雅两种情况求解即可.

1)直接法:若无主任,若只有1名主任,共105种,

间接法:

2)直接法:

间接法:

3)张雅既是主任,也是女医生.属于特殊元素,优先考虑,所以以是否有张雅来分类.

第一类:若有张雅

第二类:若无张雅,则李亮必定去,共87种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的三边长为abc,有下列四个命题:

①以为边长的三角形一定存在;

②以为边长的三角形一定存在;

③以为边长的三角形一定存在;

④以为边长的三角形一定存在.

其中正确的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数图像经过点.

1)当时,求的单调区间;

2且函数在区间上有且只有个极值点时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数,…).

(1)时,求函数的极值;

(2)若函数在区间上单调递增,求的取值范围;

(3)若,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周上有800个点,依顺时针方向标号为,它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:如果第号点已被染红,则可按顺时针方向转过个间隙,再将所到达的那个端点染红.如此继续下去.试问圆周上最多可得到多少个红点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个七棱锥,它们有公共面的底面,顶点在底面的两则.现将下述线段中的每一条染红、蓝两色之一:,底面上的所有对角线和所有的侧棱.求证:图中心存在一个同色三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,且Sn+22annN*.

1)求数列{an}的通项公式;

2)令bn,设数列{bn}的前项和为Tn,若Tn,求n的最小值.

查看答案和解析>>

同步练习册答案