精英家教网 > 高中数学 > 题目详情
设g(x)=(a-1)x-bf(x),其中f(x)=ln(x+1),a>0,且g(e-1)=(b-1)(e-1)-a
(e为自然对数的底数)
(1)求a与b的关系;
(2)若g(x)在区间(-
1
2
,2)
上单调递减,求f(a)的取值范围;
(3)证明:①g(x)≥-x(x>-1);
[
1
f(1)
-f′(1)f′(2)]+[
1
f(2)
-f′(2)f′(3)]+…+[
1
f(n-1)
-f′(n-1)f′(n)]≥
1
2
(n∈N*且n≥2)
分析:(1)、将x=e-1代入g(x),将等式两边相等便可求出a与b的关系;
(2)、先求出g(x)的导函数g'(x),令g'(x)≤0,便可求出a的取值范围,根据a的取值范围可以求出f(a)的取值范围;
(3)①令p(x)=g(x)+x,先求出导函数p'(x),根据p'(x)求出函数的单调性,进而求得p(x)在(-1,+∞)的最小值为0,即可证明;
②、根据①的结论可以求出
1
f(n)
和f′(n-1)f′(n)的函数表达式,将二者的表达式代入其中,逐步化简便可证明敢不等式.
解答:解:(1)g(e-1)=(a-1)(e-1)-bln(e-1+1)
=(a-1)(e-1)-b=(b-1)(e-1)-a
则(a-b)(e-1)+(a-b)=0即(a-b)e=0,
∴a=b(3分)
(2)由(1)g(x)=(a-1)x-aln(x+1),g′(x)=(a-1)-
a
x+1
(4分)
g(x)在区间(-
1
2
,2)
上单调递减,则g'(x)≤0在区间(-
1
2
,2)
上恒成立(5分)
由g'(x)≤0得(a-1)-
a
x+1
≤0
(a-1)x-1
x+1
≤0

x+1≥
1
2
,则(a-1)x-1≤0区间(-
1
2
,2)
上恒成立
令?(x)=(a-1)x-1,
{
?(-
1
2
)≤0
?(2)≤0
?-1≤a≤
3
2

而a>0,则0<a≤
3
2
(7分)
1<1+a≤
5
2
0<ln(1+a)≤ln
5
2

故f(a)的取值范围为(0,ln
5
2
]
(8分)
(3)证明:①令p(x)=g(x)+x=ax-aln(x+1)(x>-1)
p′(x)=a(1-
1
x+1
)=
ax
x+1
,由p'(x)>0得x>0
∴p(x)在(-1,0)上递减,在(0,+∞)上递增,
∴p(x)≥p(0)=0
即g(x)≥-x(x>-1)(10分)
②由①易知x≥ln(x+1),
∴当n≥2时,ln[(n2-1)+1]≤n2-1,即lnn≤
n2-1
2

∴当n≥2时
1
lnn
2
n2-1

f′(n-1)f′(n)=
1
n(n+1)

1
f(n-1)
=
1
lnn
2
n2-1
=
2
(n+1)(n-1)
=
1
n-1
-
1
n+1
(1)
∴n∈N*且n≥2时
[
1
f(1)
-f′(1)f′(2)] +[
1
f(2)
-f′(2)f′(3)] +…
[
1
f(n-1)
-f′(n-1)f′(n)]

=[
1
f(1)
+
1
f(2)
+…
1
f(n-1)
]+[ f′(1)f′(2)+f′(2)f′(3)+…+f′(n-1)f′(n)]

=(
1
ln2
+
1
ln3
+…
1
lnn
) -[
1
2×3
+
1
3×4
+…
1
n(n+1)
]

[
1
1×3
+
1
2×4
+…
2
(n-1)(n+1)
]-[ (
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]

=[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n-1
-
1
n+1
)]-(
1
2
-
1
n+1

=(1+
1
2
-
1
n
-
1
n+1
)+(
1
n+1
-
1
2

=1-
1
n
1
2
点评:本题主要考查了利用函数的导数求出函数的单调性以及函数的最值问题,以及利用导函数证明不等式,本题综合性较强,是各地高考的热点和难点,属于中档题,同学们要加强训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=-2x2-2ax+a+1,其中x∈[-1,0],a≥0,f(x)的最大值为d.
(1)试用a表示d=g(a);(2)解方程g(a)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a为常数);
(1)如果函数y=f(x)和y=g(x)有相同的极值点,求a的值;
(2)设a>0,问是否存在x0∈(-1,
a3
)
,使得f(x0)>g(x0),若存在,请求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 x=0是函数f(x)=(x2+ax+b)ex(x∈R)的一个极值点.
(1)求 a与b的关系式(用a表示b),并求f(x)的单调区间;
(2)设 a>0,g(x)=-(a2-a+1)ex+2,问是否存在ξ1,ξ2∈[-2,2],使得|f(ξ1)-g(ξ2)|≤1成立?若存在,求 a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a为常数);
(1)如果函数y=f(x)和y=g(x)有相同的极值点,求a的值;
(2)设a>0,问是否存在x0∈(-1,
a3
)
,使得f(x0)>g(x0),若存在,请求出实数a的取值范围;若不存在,请说明理由.
(3)记函数H(x)=[f(x)-1]•[g(x)-1],若函数y=H(x)有5个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2+(a-1)x+2a+1是偶函数,g(x)=
4x-b2x
是奇函数,那么a+b的值是
2
2

查看答案和解析>>

同步练习册答案