精英家教网 > 高中数学 > 题目详情

【题目】已知平面上有两定点AB,该平面上一动点P与两定点AB的连线的斜率乘积等于常数,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)

【答案】①②④⑤

【解析】

本题可设,然后以所在直线为x轴,以的垂直平分线为y轴建立平面直角坐标系,则,设P的坐标为,由题意,,即.然后对m进行分类分析即可得出答案。

,以所在直线为x轴,以得垂直平分线为y轴建立平面直角坐标系,则

P的坐标为,则

由题意,,即

时,方程化为,表示直线;

时,方程化为,表示圆;

时,方程化为,表示双曲线;

时,方程化为,表示椭圆,

所以动点P的轨迹可能是:①直线;②圆;④双曲线;⑤椭圆.

故答案为:①②④⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,若恒成立,则实数的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一布袋中装有个小球,甲,乙两个同学轮流且不放回的抓球,每次最少抓一个球,最多抓三个球,规定:由乙先抓,且谁抓到最后一个球谁赢,那么以下推断中正确的是( )

A. ,则乙有必赢的策略B. ,则甲有必赢的策略

C. ,则甲有必赢的策略D. ,则乙有必赢的策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示.

(1)求函数fx)的解析式;

(2)求函数fx)的单调增区间;

(3)若x∈[-,0],求函数fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一 厂家在一批产品出厂前要对其进行质量检验,检验方案是: 先从这批产品中任取3件进行检验,这3件产品中优质品的件数记为.如果,再从这批产品中任取3件进行检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取4件进行检验,若都为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.

(1) 求这批产品通过检验的概率;

(2) 已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为(单位: 元),求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(ax2+2x+3).

(1)若f(x)定义域为R,求a的取值范围;

(2)若f(1)=1,求f(x)的单调区间;

(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋里装有个白球和个红球,从口袋中任取个球.

(1)共有多少种不同的取法?

(2)其中恰有一个红球,共有多少种不同的取法?

(3)其中不含红球,共有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为,过直线上一点引曲线的切线,切点为,求的最小值.

查看答案和解析>>

同步练习册答案