精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=x2+acosx+bx,非空数集A={x|f(x)=0},B={x|f(f(x))=0},已知A=B,则参数a的所有取值构成的集合为_____;参数b的所有取值构成的集合为_____

【答案】

【解析】分析:根据条件A=B,得f(0)=0,解得a;再根据f(-b)=0,得f(x)=-b无解或仅有零根,解得b的取值范围.

详解:因为A=B,所以f(x)=0成立时f(f(x))=0也成立,因此f(0)=0,即参数a的所有取值构成的集合为

因为f(x)=x2+ bx,所以由f(x)=0

-b=0, f(f(x))= x4=0,满足A=B

,f(f(x))=0f(x)=0f(x)=-b

因此f(x)=-b无解或仅有零根,因为即方程无解

综上b的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知点F为抛物线C)的焦点,过点F的动直线l与抛物线C交于MN两点,且当直线l的倾斜角为45°时,.

1)求抛物线C的方程.

2)试确定在x轴上是否存在点P,使得直线PMPN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形是边长为2的菱形

1)证明:平面平面

2)当平面与平面所成锐二面角的余弦值,求直线与平面所成角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )

A. 甲型号手机在外观方面比较好.B. 甲、乙两型号的系统评分相同.

C. 甲型号手机在性能方面比较好.D. 乙型号手机在拍照方面比较好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,下列命题:

的定义域为

是奇函数;

上单调递增;

④若实数满足,则

⑤设函数在上的最大值为,最小值为,则.

其中真命题的序号是______.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2cosxsinx+2φ)为偶函数,其中φ∈(0),则下列关于函数gx)=sin2x+φ)的描述正确的是(

A.gx)在区间[]上的最小值为﹣1

B.gx)的图象可由函数fx)的图象向上平移一个单位,再向右平移个单位长度得到

C.gx)的图象的一个对称中心为(0

D.gx)的一个单调递增区间为[0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其定义域为.(其中常数,是自然对数的底数)

1)求函数的递增区间;

2)若函数为定义域上的增函数,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

同步练习册答案