精英家教网 > 高中数学 > 题目详情

【题目】

1)证明:时,

2)当,求整数的最大值.(参考数据:

【答案】1)证明见解析;(2.

【解析】

1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.

2)对函数求导,变形后讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.

1)证明:当时代入可得

解得

,所以单调递增,

,所以单调递减,

所以

,即成立.

2)函数

时,当时,,则时单调递减,所以,即当成立;

所以此时需满足的整数解即可,

将不等式化简可得

解得

,即内单调递减,

,即内单调递增,

所以当取得最小值,

所以此时满足的整数 的最大值为

时,在,此时,与题意矛盾,所以不成立.

因为求整数的最大值,所以时无需再讨论,

综上所述,当,整数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(Ⅰ) 设(其中的导数),求的极小值;

(Ⅱ) 若对,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,在三棱柱中,,如图.

1)求证:平面

2)若,求平面与平面所成锐二面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率为,直线恒过的一个焦点.

1)求的标准方程;

2)设为坐标原点,四边形的顶点均在上,交于,且,若直线的倾斜角的余弦值为,求直线轴交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,.的中点的动直线与线段交于点.沿直线向上翻折至,使得点在平面内的投影落在线段.则点的轨迹长度为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】百年大计,教育为本.某校积极响应教育部号召,不断加大拔尖人才的培养力度,为清华、北大等排名前十的名校输送更多的人才.该校成立特长班进行专项培训.据统计有如下表格.(其中表示通过自主招生获得降分资格的学生人数,表示被清华、北大等名校录取的学生人数)

年份(届)

2014

2015

2016

2017

2018

41

49

55

57

63

82

96

108

106

123

1)通过画散点图发现之间具有线性相关关系,求关于的线性回归方程;(保留两位有效数字)

2)若已知该校2019年通过自主招生获得降分资格的学生人数为61人,预测2019年高考该校考人名校的人数;

3)若从2014年和2018年考人名校的学生中采用分层抽样的方式抽取出5个人回校宣传,在选取的5个人中再选取2人进行演讲,求进行演讲的两人是2018年毕业的人数的分布列和期望.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面四边形中,上的一点,的中点,以为折痕把折起,使点到达点的位置,且.

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDPE中,四边形ABCD是直角梯形,,平面平面的余弦值为FBE中点,GPD中点.

1)求证:平面ABCD

2)求平面BCE与平面ADE所成角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案