A. | $\frac{8}{5}$ | B. | $\frac{6}{5}$ | C. | $\frac{4}{5}$ | D. | 2 |
分析 根据平面向量的数量积,利用同角的三角函数基本关系,即可求出对应的值.
解答 解:向量$\overrightarrow a=(sin2α,cosα),\overrightarrow b=(1,cosα)$,且$tanα=\frac{1}{2}$,
$\overrightarrow a•\overrightarrow b$=sin2α+cos2α
=$\frac{2sinαcosα{+cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{2tanα+1}{{tan}^{2}α+1}$
=$\frac{2×\frac{1}{2}+1}{{(\frac{1}{2})}^{2}+1}$
=$\frac{8}{5}$.
故选:A.
点评 本题考查了平面向量的数量积和同角的三角函数基本关系应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{2}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-8] | B. | (-∞,-8) | C. | (-∞,-6] | D. | (-∞,-6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{5}π}}{5}$ | B. | $\frac{{2\sqrt{5}π}}{5}$ | C. | $\frac{{4\sqrt{5}π}}{5}$ | D. | $\frac{{8\sqrt{5}π}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com