精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知F1(-4,0),直线l:x=-2,动点M到F1的距离是它到定直线l距离的
2
倍.设动点M的轨迹曲线为E.
(1)求曲线E的轨迹方程.
(2)设点F2(4,0),若直线m为曲线E的任意一条切线,且点F1、F2到m的距离分别为d1,d2,试判断d1d2是否为常数,请说明理由.
分析:(1)利用动点M到F1的距离是它到定直线l距离的
2
倍,建立方程,化简可得曲线E的轨迹方程;
(2)分类讨论,设出切线方程代入双曲线方程,利用根的判别式及点到直线的距离公式,即可得到结论.
解答:解:(1)由题意,设点M(x,y),则有|MF1|=
(x+4)2+y2
,点M(x,y)到直线的距离d=|x-(-2)|=|x+2|,故
(x+4)2+y2
=
2
|x+2|
,化简后得:x2-y2=8.
故动点M的轨迹方程为x2-y2=8
(2)d1d2是常数,证明如下:
若切线m斜率不存在,则切线方程为x=±2
2
,此时d1d2=(c+a)(c-a)=b2=8
当切线m斜率存在时,设切线m:y=kx+b,代入x2-y2=8,整理得:x2-(kx+b)2=8,
∴(1-k2)x2-2bkx-(b2+8)=0
由△=(-2bk)2+4(1-k2)(b2+8)=0,化简得:b2=8k2-8
又由m:kx-y+b=0,∴d1=
|-4k+b|
k2+1
  d2=
|4k+b|
k2+1

d1d2=
|16k2-b2|
k2+1
=
|16k2-(8k2-8)|
k2+1
=8
=常数.
综上,故对任意切线m,d1d2是常数
点评:本题考查轨迹方程,考查直线与双曲线的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案