A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | -$\frac{π}{6}$ |
分析 由题意可得 2sin(2x+θ-$\frac{π}{3}$)为偶函数,可得θ=kπ+$\frac{5π}{6}$,故θ应从A、D中选取.分别检验是否满足在[$\frac{π}{4}$,$\frac{π}{3}$]上是减函数,可得结论.
解答 解:∵f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)=2sin(2x+θ-$\frac{π}{3}$)为偶函数,
∴θ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,即 θ=kπ+$\frac{5π}{6}$,故θ应从A、D中选取.
若θ=$\frac{5π}{6}$,f(x)=2sin(2x+$\frac{π}{2}$)=2cos2x,在[$\frac{π}{4}$,$\frac{π}{3}$]上,2x∈[$\frac{π}{2}$,$\frac{2π}{3}$],f(x)是减函数,满足条件.
若θ=-$\frac{π}{6}$,f(x)=2sin(2x-$\frac{π}{2}$)=-2cos2x,在[$\frac{π}{4}$,$\frac{π}{3}$]上,2x∈[$\frac{π}{2}$,$\frac{2π}{3}$],f(x)是增函数,不满足条件.
故选:A.
点评 本题主要考查三角函数的奇偶性,正弦函数、余弦函数的单调性,体现了分类讨论的数学思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | ?x∈(-1,1)使得cosx<$\frac{1}{2}$ | |
B. | “-3<m<0”是“函数f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的必要不充分条件 | |
C. | x=$\frac{π}{6}$是曲线f(x)=$\sqrt{3}$sin2x+cos2x的一条对称轴 | |
D. | 若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-$\frac{1}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [2-$\frac{\sqrt{2}}{2}$,2+$\frac{\sqrt{2}}{2}$] | B. | [$\frac{11}{4}$-$\frac{3\sqrt{2}}{2}$,2-$\frac{\sqrt{2}}{2}$] | C. | [2+$\frac{\sqrt{2}}{2}$,$\frac{11}{4}$+$\frac{3\sqrt{2}}{2}$] | D. | [$\frac{11}{4}$-$\frac{3\sqrt{2}}{2}$,$\frac{11}{4}$+$\frac{3\sqrt{2}}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com