精英家教网 > 高中数学 > 题目详情
13.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;
第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b的钢条至少需要27根.
问:如何切割可使钢条用量最省?

分析 设按第一种切割方式需钢条x根,按第二种切割方式需钢条y根,由题意得到关于x,y的不等式组,即约束条件,由约束条件作出可行域,得到最优整解,代入目标函数得答案.

解答 解:设按第一种切割方式需钢条x根,按第二种切割方式需钢条y根,
根据题意得约束条件是$\left\{\begin{array}{l}{2x+y≥15}\\{x+3y≥27}\\{x>0,x∈N}\\{y>0,y∈N}\end{array}\right.$,目标函数是z=x+y,
画出不等式组表示的平面区域如下图阴影部分.

由$\left\{\begin{array}{l}{2x+y=15}\\{x+3y=27}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3.6}\\{y=7.8}\end{array}\right.$,
此时z=11.4,但x,y,z都应当为正整数,
∴点(3.6,7.8)不是最优解.
经过可行域内的整点且使z最小的直线是y=-x+12,
即z=12,满足该约束条件的(x,y)有两个:(4,8)或(3,9),它们都是最优解.
即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;
或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.

点评 本题考查简单的线性规划,考查了简单的数学建模思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知2x2+x-3=(x-1)(ax+b),则a,b的值分别为(  )
A.2,3B.2,-3C.-2,3D.-2,-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义域为R的函数$f(x)=\frac{{1-{3^x}}}{{a+{3^{x+1}}}}$
(1)若a=1,求证函数f(x)不是奇函数;
(2)若此函数是奇函数
①判断并证明函数f(x)的单调性;
②求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知方程$\frac{{x}^{2}}{m}$+y2=1表示的曲线是焦点在x轴上且离心率为$\frac{1}{2}$的椭圆,则m=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)对任意的x∈R都有f(x)+f(-x)=0,且当x>0时,f(x)=ln(2x+1),则函数f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(0,+∞)上递增的奇函数是(  )
A.y=2xB.y=lgxC.y=x2D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2+$\sqrt{m}$•x+n满足f(0)=2且方程f(x)=-2有相等实数根.
(1)求f(x)的表达式.
(2)求函数$g(x)={(\frac{1}{2})^{f(x)}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知过原点O的直线与函数y=log9x的图象交于A,B两点,分别过A,B作y轴的平行线与函数y=log3x的图象 交于C,D两点,当BC∥x轴时,A点的横坐标是(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等差数列{an}的公差d≠0,前n项和为Sn.且a3、a5、a8依次成等比数列,则$\frac{{S}_{10}}{{a}_{9}}$=$\frac{13}{2}$.

查看答案和解析>>

同步练习册答案