【题目】已知7cos2α﹣sinαcosα﹣1=0,α∈( , ),求cos2α和 的值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin +e﹣|x﹣1| , 有下列四个结论:
①图象关于直线x=1对称;
②f(x)的最大值是2;
③f(x)的最大值是﹣1,;
④f(x)在区间[﹣2015,2015]上有2015个零点.
其中正确的结论是(写出所有正确的结论序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我市为了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100]并绘制出频率分布直方图,如图所示.
(1)求频率分布直方图中的a值,及该市学生汉字听写考试的平均分;
(2)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N中至少有一人被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin( ﹣ )﹣2cos2 +1. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于直线x=1对称,求当x∈[0, ]时y=g(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.
(1)求a的值;
(2)求平面A1BC1与平面B1BC1所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为4的菱形中, ,点、分别在边、上.点与点、不重合, , ,沿将翻折到的位置,使平面平面.
(Ⅰ)求证: 平面;
(Ⅱ)记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆上一动点,轴于点,若动点满足(其中为非零常数)
(1)求动点的轨迹方程;
(2)当时,得到动点的轨迹为曲线,斜率为1的直线与曲线相交于,两点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com