精英家教网 > 高中数学 > 题目详情
16.已知A={x|x2-2x-3>0},B={x|2m-1≤x≤m+3},若B⊆A,则实数m的取值范围{m|m<-4或m>2}.

分析 先化简集合A,由B⊆A得B=∅,或B≠∅,2m-1≤m+3且m+3<-1,或2m-1≤m+3且2m-1>3,解得即可.

解答 解:∵x2-2x-3>0,∴x<-1或x>3.∴A={x|x<-1或x>3}.
∵B⊆A,
∴B=∅,2m-1>m+3,∴m>4;
B≠∅,2m-1≤m+3且m+3<-1,或2m-1≤m+3且2m-1>3,∴m<-4或2<m≤4
∴实数m的取值范围是{m|m<-4或m>2}.
故答案为:{m|m<-4或m>2}.

点评 本题考查了集合间的关系,分类讨论和数形结合是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=-x2+2x+a(0≤x≤3)的最大值为m,最小值为n,其中a≠0,a∈R.
(1)求m,n的值(用a表示);
(2)已知角α的顶点与直角坐标系x Oy中的原点 O重合,始边与x轴的正半轴重合,终边经过点 A(m-1,2n+6),求$\frac{sinα+cosα}{sinα-cosα}+{cos^2}α$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=$\frac{1}{4}{x^2}$上点P的纵坐标是4,则其焦点F到点P的距离为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,定义域为R的是(  )
A.y=$\sqrt{x}$B.y=(x-1)0C.y=x3+3D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.增广矩阵$(\begin{array}{l}{3}&{m}&{-1}\\{n}&{1}&{0}\end{array})$的二元一次方程组的实数解为$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,则m+n=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知AB⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在定义域内既是奇函数又是增函数的为(  )
A.y=x+1B.y=log3|x|C.y=x3D.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知全集U={0,1,2,3,4,5},且B∩∁UA={1,2},A∩∁UB={5},∁UA∩∁UB={0,4},则集合A={3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x2-4x+3|,若方程f(x)=m有四个不相等的实数根,则实数m的取值范围是0<m<1.

查看答案和解析>>

同步练习册答案