精英家教网 > 高中数学 > 题目详情

【题目】设n为一个正整数,三维空间内的点集S满足下述性质:

(1).空间内不存在n个平面,使得点集S中的每个点至少在这n个平面中的一个平面上;

(2).对于每个点,均存在n个平面,使得中的每个点均至少在这n个平面中的一个平面上.

求点集S中点的个数的最小值与最大值.

【答案】最小值为3n+1最大值为.

【解析】

先求的最小可能值.

由于过任意三点均可以作一个平面,故.

而当3n+1个点中,任意四点不共面时,即满足题设条件.

于是,的最小可能值为3n+1.

接下来求的最大可能值.

对于每一个

设直线能覆盖.

由题设知.

.

为一个三元n次多项式,且.

于是,为次数不超过n的三元多项式的向量空间)中是线性无关的.

因此,.

下面给出集合S中有个点的例子.

如图,设个点构成的正四面体点阵.

.

对于每个点,可以用n个平面覆盖.但不能用n个平面覆盖.

综上,集合S中点的个数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数)

(Ⅰ)若函数无极值,求实数的取值范围;

(Ⅱ)时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为的菱形中,交于点,将沿直线折起到的位置(点不与两点重合).

(1)求证:不论折起到何位置,都有平面

(2)当平面时,点是线段上的一个动点,若与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:

每周累积户外暴露时间(单位:小时)

不少于28小时

近视人数

21

39

37

2

1

不近视人数

3

37

52

5

3

(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;

(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?

近视

不近视

足够的户外暴露时间

不足够的户外暴露时间

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,侧面底面,且为等腰直角三角形,的中点.

1)求证:平面

2)求直线与平面所成线面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)若上恰有2个点到的距离等于,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的面积为且与轴、轴分别交于两点.

1)求圆的方程;

(2)若直线与线段相交,求实数的取值范围;

(3)试讨论直线与(1)小题所求圆的交点个数.

查看答案和解析>>

同步练习册答案