精英家教网 > 高中数学 > 题目详情
1.已知f(x2)=1og2x,则f(2)=$\frac{1}{2}$.

分析 直接利用函数的解析式求解函数值即可.

解答 解:f(x2)=1og2x,则f(2)=$f[{(\sqrt{2})}^{2}]$=1og2$\sqrt{2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.y=2sin$\frac{x}{2}$+$\frac{π}{3}$的值域为[-2+$\frac{π}{3}$,2+$\frac{π}{3}$],当y取最大值时,x=x=π+4kπ,k∈Z;当y取最小值时,x=x=-π+4kπ,k∈Z,周期为4π,单调递增区间为[-π+4kπ,π+4kπ],k∈Z;单调递减区间为[π+4kπ,3π+4kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右顶为A,点P在椭圆上,O为坐标原点,且OP⊥PA,求椭圆的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=2x与过点M(m,0)(m>0)的直线交于A(x1,y1),B(x2,y2)两点.若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知某产品的次品率为0.04,现要抽取这种产产品进行检验,则要检查到次品的概率达到0.95以上,至少要选74个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,椭圆上两点A,B关于原点对称,M,N分别是线段AF,BF的中点,且以MN为直径的圆过原点,直线AB的斜率k满足0<k<$\frac{\sqrt{3}}{3}$,则椭圆的离心率e的取值范围是(  )
A.(0,$\frac{\sqrt{6}}{3}$)B.($\frac{\sqrt{6}}{3}$,1)C.(0,$\sqrt{3}$-1)D.($\sqrt{3}$-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过圆x2+y2=5上一点(-1,2)的圆的切线方程是x-2y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD.异面直线PB与CD所成的角为45°.求:
(1)二面角B-PC-D的大小;
(2)直线PB与平面PCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{logkan}是首项为4,公差为2的等差数列,其中k>0,且k≠1,设cn=anlgan,若{cn}中的每一项恒小于它后面的项,则实数k的取值范围为$(0,\frac{\sqrt{6}}{3})$∪(1,+∞).

查看答案和解析>>

同步练习册答案