精英家教网 > 高中数学 > 题目详情
1.已知复数z满足:z(1-i)=2+4i,其中i为虚数单位,则复数z的模为$\sqrt{10}$.

分析 把已知的等式变形,利用复数代数形式的乘除运算化简,代入模的公式得答案.

解答 解:由z(1-i)=2+4i,得
$z=\frac{2+4i}{1-i}=\frac{(2+4i)(1+i)}{(1-i)(1+i)}=\frac{-2+6i}{2}=-1+3i$,
∴$|z|=\sqrt{(-1)^{2}+{3}^{2}}=\sqrt{10}$.
故答案为:$\sqrt{10}$.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,已知圆M的半径为2,点P与圆心M的距离为4,正方形ABCD是圆M的内接四边形,E,F是边AB,AD的中点,当正方形ABCD绕圆心M转动时,$\overrightarrow{PF}$•$\overrightarrow{ME}$的取值范围是(  )
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.[-4,4]D.[-4$\sqrt{2}$,4$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中,真命题是(  )
A.?x0∈R,ex<0
B.若a,b∈R,a+b=0的充要条件是$\frac{a}{b}$=-1
C.命题p:?x∈R,f(x)≥0,则?p:?x0∈R,f(x)<0
D.命题“在△ABC中,若$\overrightarrow{AB}•\overrightarrow{BC}$<0,则△ABC为钝角三角形的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数$f(x)=\left\{{\begin{array}{l}{3x-1,x<1}\\{{2^x},x≥1}\end{array}}\right.$,则满足f(f(a))=2f(a)的a的取值范围是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.贵阳市某数学教师从他所教的2015届高三(X)班与高三(Y)班学生的高考数学成绩中,随机抽取20名学生的成绩绘制成频率分布直方图,如图所示.
(I)求频率分布直方图中a的值,并估计高三(X)班与高三(Y)班学生在此次考试中数学成绩的优良率(考试分数不小于110分为优良分);
(Ⅱ)求这20名学生的数学考试成绩的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等比数列{an}的公比q>1,其前n项和为Sn.若S4=2S2+1,则S6的最小值为2$\sqrt{3}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算$\frac{tan(\frac{π}{4}-α)cos2α}{2co{s}^{2}(\frac{π}{4}+α)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知ex+ax-a>0恒成立,则实数a的取值范围为(-e2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求证:函数f(x)=x-$\frac{1}{x}$,x∈(-∞,0)是增函数.

查看答案和解析>>

同步练习册答案