精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点O,焦点在x轴上,离心率为e=
1
2
,P为椭圆上一动点.F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(I)求椭圆C的方程;
(II)设直线l与圆x2+y2=1相切且与椭圆C相交于A、B两点,求
OA
OB
的取值范围.
(I)设椭圆C1的方程为
x2
a2
+
y2
b2
=1(a>b>0),c=
a2-b2

a2-b2
a
=
1
2
,所以
3
a=2b、
由椭圆的几何性质知,当点P为椭圆的短轴端点时,
△PF1F2的面积最大,故|F1F2|b=bc=
3

解得a=2,b=
3

故所求椭圆方程为
x2
4
+
y
3
=1.
(II)当直线l的斜率不存在时,因l与与圆x2+y2=1相切,∴l:x=1,此时A(1,
3
2
),
B(1,-
3
2
),∴
OA
OB
=1-
9
4
=
5
4

当直线l的斜率存在时,设l:y=kx+m,因l与与圆x2+y2=1相切,∴
|m|
1+k2
=1
,整理得m2=k2+1,
联立l与椭圆C的方程,消去y得(4k2+3)x2+8kmx+4m2-12=0,
△=48(4k2+3-m2)=48(3k2+2)>0,设A(x1,y1),B(x2,y2),
则x1+x2=-
8km
4k2+3

x1x2=
4m2-12
4k2+3

∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
3m2-12k2
4k2+3

OA
OB
=x1x2+y1y2=
4m2-12
4k2+3
+
3m2-12k2
4k2+3
=
-5(k2+1)
4k2+3
=-
5
4
-
5
4(4k2+3)

∵4k2+3≥3,
∴0<
5
4(4k2+3)
5
12
,-
5
3
OA
OB
<-
5
4

综上,
OA
OB
的取值范围是[-
5
3
,-
5
4
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,椭圆C任意一点P到两个焦点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求椭圆C的方程;
(2)设过(0,-2)的直线l与椭圆C交于A、B两点,且
OA
OB
=0
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
32
)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2M⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
3
1
2
)
,离心率是
3
2

(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为
1
2
,它的一个顶点恰好是抛物线y=
3
12
x2的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求
OS
OT
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一条准线为x=-
5
2
,离心率为
2
5
5

(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步练习册答案