已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有( )
A.f(sinα-sinβ)≥f(cosα-cosβ)
B.f(sinα-cosβ)>f(cosα-sinβ)
C.f(sinα-cosβ)≥f(cosα-sinβ)
D.f(sinα-cosβ)<f(cosα-sinβ)
【答案】
分析:由“奇函数y=f(x)在[-1,0]上为单调递减函数”可知f(x)在[0,1]上为单调递减函数,再由“α、β为锐角三角形的两内角”可得到α+β>
,转化为
>α>
-β>0,两边再取正弦,可得1>sinα>sin(
)=cosβ>0,利用不等式的基本性质可得-1<-sinα<-cosβ<0,利用同向不等式的可加性,可得-1<cosα-sinβ<sinα-cosβ<1,由函数的单调性可得结论.
解答:解:∵奇函数y=f(x)在[-1,0]上为单调递减函数
∴f(x)在[0,1]上为单调递减函数,∴f(x)在[-1,1]上为单调递减函数,
又α、β为锐角三角形的两内角
∴α+β>
∴
>α>
-β>0
∴1>sinα>sin(
)=cosβ>0
∴-1<-sinα<-cosβ<0
∴-1<cosα-sinβ<sinα-cosβ<1
∴f(sinα-cosβ)<f(cosα-sinβ)
故选D.
点评:题主要考查奇偶性和单调性的综合运用,还考查了三角函数的单调性.属中档题.