【题目】已知函数.
(1)讨论的导数的单调性;
(2)若有两个极值点,,求实数的取值范围,并证明.
【答案】(1)在上单调递减,在上单调递增;
(2)见解析.
【解析】
(1)求出,令,对,讨论来求的单调性;
(2)将有两个极值点,转化为有两解,继续转化为有两解,构造函数,求导为其极小值,可得,即可求得实数的取值范围;另外要证明,不妨设,则,由(1)根据的单调性得,通过变形,转化为证明,进一步变形证明,构造函数,利用导数研究其最小值即可证明.
(1)由题意,得.
设,则.
①当时,,所以在上单调递增.
②当时,由,得.
当时,,在上单调递减;
当时,,在上单调递增.
(2)由于有两个极值点,,即在上有两解,,
即,显然,故等价于有两解,,
设,则,
当时,,所以在单调递减,
且,时,,时,;
当时,,所以在单调递减,且时,;
当时,,所以在单调递增,且时,,
所以是的极小值,有两解,等价于,得.
不妨设,则.
据(1)在上单调递减,在上单调递增,
故,
由于,,且,则,
所以,,
即,,
欲证明:,等价于证明:,
即证明:,只要证明:,
因为在上单调递减,,
所以只要证明:,
由于,所以只要证明:,
即证明:,
设,据(1),
,
所以在上单调递增,
所以,
即,
故.
科目:高中数学 来源: 题型:
【题目】凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有100多年.龙眼干的级别按直径的大小分为四个等级(如下表).
级别 | 三级品 | 二级品 | 一级品 | 特级品 |
某商家为了解某农场一批龙眼干的质量情况,随机抽取了100个龙眼干作为样本(直径分布在区间),统计得到这些龙眼干的直径的频数分布表如下:
频数 | 1 | 29 | 7 |
用分层抽样的方法从样本的一级品和特级品中抽取6个,其中一级品有2个.
(1)求、的值,并估计这批龙眼干中特级品的比例;
(2)已知样本中的100个龙眼干约500克,该农场有500千克龙眼干待出售,商家提出两种收购方案:
方案:以60元/千克收购;
方案:以级别分装收购,每袋100个,特级品40元/袋、一级品30元/袋、二级品20元/袋、三级品10元/袋.
用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.
(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)
(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;
(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:
单价(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
销量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若变量,具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数的分布列和数学期望.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在A,B试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中a的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,若在A,B两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆,经过抛物线的焦点,斜率为1的直线经过且与椭圆交于两点.
(1)求面积;
(2)动直线与椭圆有且仅有一个交点,且与直线,分别交于两点,且为椭圆的右焦点,证明为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等边的边长为,点,分别是,上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).
(1)求证:平面;
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直四棱柱的棱长均相等,且BAD=60,M是侧棱DD1的中点,N是棱C1D1上的点.
(1)求异面直线BD1和AM所成角的余弦值;
(2)若二面角的大小为,,试确定点N的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com