精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0.
(1)求直线l与曲线C的普通方程;
(2)已知直线l与曲线C交于A,B两点,设M(2,0),求| |的值.

【答案】
(1)解:直线l的参数方程为 (t为参数),消去参数,可得普通方程y= (x﹣2);

曲线C的极坐标方程为ρsin2θ﹣4cosθ=0,直角坐标方程为y2=4x


(2)解:直线l的参数方程为 (t为参数),代入y2=4x,整理可得3t2﹣8t﹣32=0,

设A、B对应的参数分别为t1,t2,则t1+t2= ,t1t2=﹣

∴| |=| |=


【解析】(1)利用三种方程的转化方法,求直线l与曲线C的普通方程;(2)直线l的参数方程为 (t为参数),代入y2=4x,整理可得3t2﹣8t﹣32=0,利用参数的几何意义,求| |的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.
(1)求抛物线的标准方程;
(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为: (t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增数列{an},a1=2,其前n项和为Sn , 且满足3(Sn+Sn1)= +2(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 =n,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足不等式组 ,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中xOy中,已知曲线E经过点P(1, ),其参数方程为 (α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上的导函数为f′(x),对x∈R有f(x)+f(﹣x)=x2 , 在(0,+∞)上f′(x)﹣x<0,若f(4﹣m)﹣f(m)≥8﹣4m,则实数m的取值范围是(
A.[2,+∞)
B.(﹣∞,2]
C.(﹣∞,2]∪[2,+∞)
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,Sn为其前n项和,若a2 , a3 , a6成等比数列,且a10=﹣17,则 的最小值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案