精英家教网 > 高中数学 > 题目详情
17.设x、y满足约束条件$\left\{\begin{array}{l}2x+y-6≥0\\ x+2y-6≤0\\ y≥0\end{array}\right.$,则目标函数z=2x+y的最大值是6.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z和直线AC:2x+y=6平行时,直线y=-2x+z的截距最大,
此时z最大.最大值6.
故答案为:6

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知Sn是数列{an}的前n项和,S2=2,且2Sn+nS1=nan
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$-2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知PA垂直于正方形ABCD所在的平面,M,N分别在AB,PC上,且PN=2NC,AM=2MB,PA=AD=1,如图建立空间直角坐标系,求$\overrightarrow{MN}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=-$\frac{1}{4}$,3sinA=2sinB,则边c为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC的内角A、B、C所对边的长为a、b、c,且2bsinA=a,若△ABC为锐角三角形,则角B的大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a,b,c,d∈R,a2+b2=c2+d2=1,求abcd的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).
(Ⅰ)在给定的图示中画出函数f(x)图象(不需列表);
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)若方程f(x)=k有两解,求k的范围.(只需写出结果,不要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是等差数列,且a2=3,a5=6,数列{bn}是等比数列且公比q=2,S4=15
(1)求通项公式an,bn
(2)设{an}的前n项和为Sn,证明:数列$\left\{{\frac{S_n}{n}}\right\}$是等差数列
(3)设数列$\left\{{\frac{S_n}{n}•{b_n}}\right\}$的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{3}cos(\frac{π}{2}-2x)+2{cos^2}x-1$
(1)求函数f(x)的最小正周期和对称轴方程;
(2)将f(x)的图象左移$\frac{π}{12}$个单位,再向上移1个单位得到g(x)的图象,试求g(x)在区间$[0,\frac{π}{2}]$的值域.

查看答案和解析>>

同步练习册答案