【题目】如图,三棱柱ABC﹣A1B1C1中,D为AA1的中点,E为BC的中点.
(1)求证:直线AE∥平面BDC1;
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.
【答案】
(1)证明:设BC1的中点为F,连接EF,DF.
则EF是△BCC1中位线,根据已知得EF∥DA,且 EF=DA.
∴四边形ADFE是平行四边形∴AE∥DF,
∵DF平面BDC1,AE平面BDC1,
∴直线AE∥平面BDC1
(2)解:建立如图所示的空间直角坐标系B﹣xyz,
由已知得 .∴ .
设平面BDC1的一个法向量为 ,
则 .∴ ,
取z=﹣1,解得 .
∴ 是平面BDC1的一个法向量.
由已知易得 是平面ABC的一个法向量.
设平面BDC1和平面ABC所成二面角的大小为θ,
则 .∵0<θ<π,∴ .
∴平面BDC1和平面ABC所成二面角的正弦值为 .
【解析】(1)设BC1的中点为F,连接EF,DF.得到EF是△BCC1中位线,说明EF∥DA,ADFE是平行四边形,推出AE∥DF,即可证明直线AE∥平面BDC1 . (2)建立如图所示的空间直角坐标系B﹣xyz,求出相关点的坐标,求出平面BDC1的一个法向量,平面ABC的一个法向量.设平面BDC1和平面ABC所成二面角的大小为θ,通过向量的数量积求解平面BDC1和平面ABC所成二面角的正弦值即可.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD= .
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 = .
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣7,3]上的所有实数根之和为( )
A.﹣9
B.﹣10
C.﹣11
D.﹣12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知右焦点为F2(c,0)的椭圆C: + =1(a>b>0)过点(1, ),且椭圆C关于直线x=c对称的图形过坐标原点.
(1)求椭圆C的方程;
(2)过点( ,0)作直线l与椭圆C交于E,F两点,线段EF的中点为M,点A是椭圆C的右顶点,求直线MA的斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确是 , (写出所有正确命题的序号)
①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;
②若a∈(0,1),则a1+a<a ;
③函数f(x)=ln 是奇函数;
④存在唯一的实数a使f(x)=lg(ax+ )为奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
成绩/编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式: = , = ﹣ )
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程 = x+ ( 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com