精英家教网 > 高中数学 > 题目详情
4.下列函数中,在其定义域内既是奇函数,又是减函数的是(  )
A.$f(x)=\frac{1}{x}$B.$f(x)=\sqrt{-x}$C.f(x)=2-x-2xD.$f(x)={log_{\frac{1}{2}}}|x|$

分析 根据反比例函数在定义域内的单调性,奇函数定义域的特点,以及奇函数的定义,函数导数符号和函数单调性的关系即可判断每个选项的正误,从而找出正确选项.

解答 解:A.反比例函数$f(x)=\frac{1}{x}$在定义域内没有单调性;
B.f(x)定义域为{x|x≤0},不关于原点对称,不是奇函数;
C.f(x)定义域为R,f(-x)=2x-2-x=-f(x);
∴该函数为奇函数;
f′(x)=-2-xln2-2xln2<0;
∴该函数在定义域内为减函数;
∴该选项正确;
D.f(-x)=f(x);
∴该函数不是奇函数.
故选C.

点评 考查反比例函数在定义域内的单调性,奇函数定义域的特点,奇函数的定义,以及函数导数符号和函数单调性的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)过点P(-3,2),过双曲线的右焦点且斜率为$\frac{3}{4}$的直线与直线x=$\frac{{a}^{2}}{c}$和x=-$\frac{{a}^{2}}{c}$(c2=a2+b2)分别相交与点M,N,若以|MN|为直径的圆过原点,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>0,b>0,ab=8,则当a的值为4$\sqrt{2}$时,${log_4}{a^2}•{log_2}(4b)$取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下四个关于圆锥曲线的命题中正确的个数为(  )
①曲线$\frac{x^2}{16}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{16-k}+\frac{y^2}{9-k}=1(k<9)$有相同的焦点;
②方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
③过椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的右焦点F2作动直线l与椭圆交于A,B两点,F1是椭圆的左焦点,则△AF1B的周长不为定值.
④过抛物线y2=4x的焦点作直线与抛物线交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图为正方体ABCD-A1B1C1D1的平面展开图,其中E、M、N分别为A1D1、BC、CC1的中点,
(Ⅰ) 作出该正方体的直观图;
(Ⅱ) 求证:MN∥平面BEC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{lo{g}_{2}({x}^{2}-1)(x≥2)}\end{array}\right.$,则f(3)=(  )
A.2B.3C.8D.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,则满足(a+1)${\;}^{-\frac{m}{3}}$<(3-2a)${\;}^{-\frac{m}{3}}$的a的取值范围是(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有一个数列{an}的前几项为3,8,15,24,35,请归纳出该数列的通项an=n2+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有关命题的叙述,错误的个数为(  )
①命题“若p∨q为真命题,则p∧q为真命题”.
②“x=-1”是“x2-5x-6=0”的必要不充分条件.
③命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”.
④命题“sinx=siny,x=y”的逆否命题为真命题.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案