精英家教网 > 高中数学 > 题目详情
11.若A(2,0),B(x,y),C(0,4)三点共线,则$\sqrt{{x}^{2}+{y}^{2}}$的最小值为(  )
A.$\frac{4\sqrt{5}}{5}$B.2C.4D.2$\sqrt{5}$

分析 三点共线即两个向量共线,据两向量共线的充要条件求出2x+y-4=0,原点到直线的距离,即可求出答案.

解答 解:∵A(2,0),B(x,y),C(0,4),
∴$\overrightarrow{AB}$=(x-2,y),$\overrightarrow{AC}$=(-2,4),
∵A(2,0),B(x,y),C(0,4)三点共线,
∴4(x-2)=-2y,
即2x+y-4=0,
则原点到直线的距离d=$\frac{4}{\sqrt{1+4}}$=$\frac{4\sqrt{5}}{5}$,
∵$\sqrt{{x}^{2}+{y}^{2}}$表示直线上的点到原点的距离,
∴$\sqrt{{x}^{2}+{y}^{2}}$的最小值为$\frac{4\sqrt{5}}{5}$,
故选:A.

点评 本题考查两向量共线的充要条件及点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=-$\frac{1}{2}$n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an
(2)求数列bn=an+2n的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC的三个内角分别为A、B、C,当∠A=α时,2sin$\frac{A}{2}$-cos(B+C)取得最大值.
(1)求α的值;
(2)如果∠A的对边等于2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两点,且满足$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,点P为弦AB的中点,则点P的轨迹方程为x2-x+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.下列函数的定义域:
(1)y=log2(x+4)
(2)y=$\sqrt{lnx}$
(3)y=log3(5-2x)
(4)y=lg(x-3)
(5)y=$\frac{1}{1-lgx}$
(6)y=$\sqrt{lgx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x、y∈R,则“x≠3或x≠5”是x+y≠8的(  )条件.
A.充分不必要B.充要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-x-3,
(1)求a的范围,使y=f(x)在[-2,2]上不具单调性;
(2)当$a=\frac{1}{2}$时,函数f(x)在闭区间[t,t+1]上的最大值记为g(t),求g(t)的函数表达式;
(3)第(2)题的函数g(t)是否有最值,若有,请求出;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.,当每辆车的月租金定为x元时,租赁公司的月收益为y元,
(1)试写出x,y的函数关系式(不要求写出定义域);
(2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,则z=2x-y的最小值为-1.

查看答案和解析>>

同步练习册答案