【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对商品状况好评 | 100 | 20 | 120 |
对商品状况不满意 | 50 | 30 | 80 |
合计 | 150 | 50 | 200 |
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.
参考数据
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2,其中n=a+b+c+d
【答案】(Ⅰ)在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系.(Ⅱ)见解析
【解析】
(Ⅰ)根据独立性检验的公式,求得K2的值,利用附表即可得到结论;
(Ⅱ)求得X的取值分别为,利用相互对立事件的计算公式,求得相应的概率,得出随机变量的分布列,利用期望的公式,即可求解.
(Ⅰ)由题意,根据独立性检验的公式,可得K211.1>10.828.
∴在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系.
(Ⅱ)由题意可得:X的取值分别为0,1,2,3,4.
则P(X=0),P(X=1)2,P(X=2)2,P(X=3)2,P(X=4).
可得X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P(X) |
可得数学期望E(X)0+12342.
科目:高中数学 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入春天,大气流动性变好,空气质量随之提高,自然风光越来越美,自驾游乡村游也就越来越热.某旅游景区试图探究车流量与景区接待能力的相关性,确保服务质量和游客安全,以便于确定是否对进入景区车辆实施限行.为此,该景区采集到过去一周内某时段车流量与接待能力指数的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
车流量(x千辆) | 10 | 9 | 9.5 | 10.5 | 11 | 8 | 8.5 |
接待能力指数y | 78 | 76 | 77 | 79 | 80 | 73 | 75 |
(I)根据表中周一到周五的数据,求y关于x的线性回归方程.
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为该线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?
附参考公式及参考数据:线性回归方程,其中;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知函数,试判断函数的单调性,并说明理由;
(2)已知函数.
(i)判断的奇偶性,并说明理由;
(ii)求证:对于任意的x ,y∈R,且x≠±1 ,y≠±1,xy≠1都有①.
(3)由⑵可知满足①式的函数是存在的,如.问:满足①的函数是否存在无穷多个?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b为常数,a0,函数.
(1)若a=2,b=1,求在(0,+∞)内的极值;
(2)①若a>0,b>0,求证:在区间[1,2]上是增函数;
②若,,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,B,C分别是海岸线上的两个城市,两城市间由笔直的海滨公路相连,B,C之间的距离为100km,海岛A在城市B的正东方50处.从海岛A到城市C,先乘船按北偏西θ角(,其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C.已知船速为25km/h,车速为75km/h.
(1)试建立由A经P到C所用时间与的函数解析式;
(2)试确定登陆点P的位置,使所用时间最少,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程中的斜率和截距的最小二乘估计公式分别为
参考数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com