精英家教网 > 高中数学 > 题目详情
函数上的单调递增区间为   
【答案】分析:根据诱导公式和两角差的余弦公式,化函数为f(x)=cos(),再结合余弦函数单调区间的结论,求出函数在R上的单调区间,将其与区间取交集,即可得到所求的单调递增区间.
解答:解:∵cos=-cos
==cos(
令-π+2kπ≤≤2kπ,得-+kπ≤x≤+kπ,(k∈Z)
∴函数的单调递增区间为[-+kπ,+kπ],(k∈Z)
取k=0,得函数在上的单调递增区间为[-]
故答案为:[-]
点评:本题将一个三角函数式化简,并求函数的增区间,着重考查了诱导公式、三角恒等变形和三角函数的图象与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•松江区模拟)(文)已知函数f(x)=ax2-2
4+2b-b2
x
g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)当b=0时,若f(x)在[2,+∞)上单调递增,求a的取值范围;
(Ⅱ)求满足下列条件的所有实数对(a,b):当a是整数时,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对(a,b),试构造一个定义在D={x|x>-2,且x≠2k-2,k∈N}上的函数h(x),使当x∈(-2,0)时,h(x)=f(x),当x∈D时,h(x)取得最大值的自变量的值构成以x0为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)设函数f(x)=
ax
x2+b
(a>0)

(1)若函数f(x)在x=-1处取得极值-2,求a,b的值;
(2)若函数f(x)在区间(-1,1)内单调递增,求b的取值范围;
(3)在(1)的条件下,若P(x0,y0)为函数f(x)=
ax
x2+b
图象上任意一点,直线l与f(x)的图象切于点P,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)已知函数f(x)=ax3+bx2的图象经过点A(1,4),且在点A处的切线恰好与直线9x-y+3=0平行.
(Ⅰ)求实数a,b的值;
(Ⅱ)若函数f(x)在区间[m,m+1]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天河区三模)已知函数f(x)=2sin(π-x)cosx+2sin2
2
-x)-1
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)求函数f(x)在区间[
π
4
4
]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(安徽卷) 题型:013

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区向是

[  ]
A.

[0,1]

B.

[1,7]

C.

[7,12]

D.

[0,1]和[7,12]

查看答案和解析>>

同步练习册答案