精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为(
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)

【答案】D
【解析】解:根据题意作出f(x)的简图:

由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)﹣bf(x)+c=0有8个不同实数解”,
可以分解为形如关于k的方程k2﹣bk+c=0有两个不同的实数根K1、K2 , 且K1和K2均为大于0且小于等于1的实数.
列式如下: ,化简得
此不等式组表示的区域如图:

令z=b+c,则z=b+c在(2,1)处z=3,在(0,0)处z=0,
所以b+c的取值范围为(0,3),
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为(

A.2016
B.2
C.
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的序号为______.

①周期函数都有最小正周期;②偶函数一定不存在反函数;

③“是单调函数”是“存在反函数”的充分不必要条件;

④若原函数与反函数的图像有偶数个交点,则可能都不在直线上;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的短轴长为2,离心率e=
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2= 相切于点M.
(i)证明:OA⊥OB(O为坐标原点);
(ii)设λ= ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(xa)(xb)(其中ab),若f(x)的图象如图所示,则函数g(x)=axb的图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一块地皮,其中 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点 在直线段上,点在直线段上,设km,矩形草坪的面积为km2

(1)求,并写出定义域;

(2)当为多少时,矩形草坪的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

同步练习册答案
关 闭