【题目】如图,四棱锥中,侧面是边长为2的等边三角形且垂直于底面,,,是的中点.
(1)求证:直线平面;
(2)点在棱上,且二面角的余弦值为,求直线与底面所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)取中点,连结,,根据三角形中位线的性质,得出,,结合条件,可证出四边形为平行四边形,得出,最后根据线面平行的判定定理,即可证明直线平面;
(2)建立空间直角坐标系,设,则可得,由图可知底面法向量,根据空间向量法求出平面的法向量,利用已知的二面角余弦值,求出,得出点坐标,再利用空间向量求线面角的公式,求出直线与底面所成角的正弦值.
解:证明:(1)取中点,连结,,
因为为的中点,所以,,
由,得,
又,所以,//,
则四边形为平行四边形,有,
又平面,平面,故平面.
(2)
由已知得,以为坐标原点,的方向为轴正方向,为单位长,
建立如图所示的空间直角坐标系,
则,,,,
,,
设,则可得,
设平面的一个法向量为,
则,即,
取,则,
又易知底面的一个法向量为,
由于二面角的余弦值为,
∴,
∴,解得或(舍去),
∴,∴,
则,
∴直线与底面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.
温度/℃ | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数/个 | 6 | 10 | 22 | 26 | 64 | 118 | 310 |
26 | 79.4 | 3.58 | 112 | 11.6 | 2340 | 35.72 |
其中.
(1)根据散点图判断,与哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).
(2)根据表中数据,建立关于的回归方程;(保留两位有效数字)
(3)根据关于的回归方程,估计温度为33℃时的产卵数.
(参考数据:)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近期,西安公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(均为大于零的常数),哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据,建立与的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:
西安公交六公司车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为万元.已知该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.预计该车队每辆车每个月有万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()年才能开始盈利,求的值.
参考数据:
其中其中,,
参考公式:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若函数在区间(为自然对数的底数)上有唯一的零点,求实数的取值范围;
(2)若在(为自然对数的底数)上存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆交于不同的两点,.
(1)若线段的中点为,求直线的方程;
(2)若的斜率为,且过椭圆的左焦点,的垂直平分线与轴交于点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自新型冠状病毒疫情爆发以来,人们时刻关注疫情,特别是治愈率,治愈率累计治愈人数/累计确诊人数,治愈率的高低是“战役”的重要数据,由于确诊和治愈人数在不断变化,那么人们就非常关心第天的治愈率,以此与之前的治愈率比较,来推断在这次“战役”中是否有了更加有效的手段,下面是一段计算治愈率的程序框图,请同学们选出正确的选项,分别填入①②两处,完成程序框图.( )
:第天新增确诊人数;:第天新增治愈人数;:第天治愈率
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,侧面,已知,,,点是棱的中点.
(1)求证:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小姜同学有两个盒子和,最初盒子有6枚硬币,盒子是空的.在每一回合中,她可以将一枚硬币从盒移到盒,或者从盒移走枚硬币,其中是盒中当前的硬币数.当盒空时她获胜.则小姜可以获胜的最少回合是( )
A.三回合B.四回合C.五回合D.六回合
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )
A.CPI一篮子商品中所占权重最大的是居住
B.CPI一篮子商品中吃穿住所占权重超过50%
C.猪肉在CPI一篮子商品中所占权重约为2.5%
D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com