(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,
2Sn=an an+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由;
(2)设,,
若r>c>4,求证:对于一切n∈N*,不等式恒成立.
解:(1)n=1时,2a1=a1 a2+r,∵a1=c≠0,∴2c=ca2+r,.
n≥2时,2Sn=an an+1+r,① 2Sn-1=an-1 an+r,②
①-②,得2an=an(an+1-an-1).∵an≠0,∴an+1-an-1=2.
则a1,a3,a5,…,a2n-1,… 成公差为2的等差数列,a2n-1=a1+2(n-1).
a2,a4,a6,…,a2n,… 成公差为2的等差数列, a2n=a2+2(n-1).
要使{an}为等差数列,当且仅当a2-a1=1.即.r=c-c2.
∵r=-6,∴c2-c-6=0,c=-2或3.
∵当c=-2,,不合题意,舍去.
∴当且仅当时,数列为等差数列 ……………………………………6分
(2)=[a1+2(n-1)]-[a2+2(n-1)]=a1-a2=-2.
=[a2+2(n-1)]-(a1+2n)=a2-a1-2=-(). ………………………8分
∴
.
=. ……………………………………10分
∵r>c>4,∴>4,∴>2.∴0<<1.
又∵r>c>4,∴,则0<;.
∴<1..∴<1.
所以:
又>-1.
所以:
综上,对于一切n∈N*,不等式恒成立. …………………14分
【解析】略
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com