精英家教网 > 高中数学 > 题目详情
设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1,a3=b3,a7=b5
(Ⅰ)比较a15与b7的大小关系,并给出证明.
(Ⅱ)是否存在正整数m,n,使得an=bm?若存在,求出m,n之间所满足的关系式;若不存在,请说明理由.
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用a1=b1,a3=b3,a7=b5,结合等差数列、等比数列的通项,求出2d=b1(q2-1),6d=b1(q4-1),即可比较a15与b7的大小关系;
(Ⅱ)由(Ⅰ)知q2=2,2d=b1,利用an=bm,即可求出m,n之间所满足的关系式.
解答: 解:(Ⅰ)∵{an}为等差数列,公差为d,
∴a3=a1+2d,a7=a1+6d,a15=a1+14d
∵{bn}为等比数列,公比为q,
∴b3=b1q2,b5=b1q4,b7=b1q6
∵a1=b1,a3=b3
∴a1+2d=b1q2
∴b1+2d=b1q2
∴2d=b1(q2-1)--(1)
∵a7=b5
∴a1+6d=b1q4
∴ba1+6d=b1q4
∴6d=b1(q4-1)--(2)
(2)÷(1)得:3=(q4-1)÷(q2-1),
∴q2+1=3,
∴q2=2,
∴2d=b1(q2-1)=(2-1)b1=b1
∴a15=a1+14d=b1+7•(2d)=b1+7b1=8b1
b7=b1q6=b1(q2)=8b1
∴a15=b7
(Ⅱ)存在n+1=2
m+1
2
,使得an=bm.证明如下:
由(Ⅰ)知q2=2,2d=b1
∵an=bm,∴a1+(n-1)d=b1•qm-1
∴2b1+(n-1)b1=2b12
m-1
2

∴n+1=2
m+1
2
点评:本题考查等差数列与等比数列的综合,考查数列的通项,考查小时分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左焦点F1(-c,0)作倾斜角为30°的直线L交双曲线右支于点P,线段PF1的中点在y轴上,双曲线右焦点F2(c,0)到双曲线的渐近线的距离是2.
(Ⅰ)求双曲线的方程;   
(Ⅱ)设以F1F2为直径的圆与直线L交于点Q,过右焦点F2和点Q的直线L′与双曲线交于A、B两点,求弦|AB|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,B是短轴的一个端点,线段BF的延长线交椭圆于点D,且
BF
=
5
3
FD

(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xe-2x(x∈R).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若函数y=h(x)的图象与函数y=f(x)的图象关于直线x=
1
2
对称.求证:当x>
1
2
时,f(x)>h(x).
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及椭圆C:x2+16y2=16.
(Ⅰ)过点P的直线l1与椭圆交于M、N两点,且|MN|=
3
,求以线段MN为直径的圆Q的方程;
(Ⅱ)设直线kx-y+1=0与椭圆C交于A,B两点,是否存在实数k,使得过点P的直线l2垂直平分弦AB?若存在,求出实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
4
=1(a>0)的中心为原点O,左,右焦点分别为F1,F2,离心率为
3
5
5
,点P是直线x=
a2
3
上任意一点,点Q在双曲线E上,且满足
PF2
QF2
=0.
(1)求实数a的值;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同两点M,N,在线段MN上取异于点M,N的点H,满足
|PM|
|PN|
=
|MH|
|HN|
,证明点H恒在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx.
(Ⅰ)令f1(x)=f(x),fn+1(x)=
f
n
(x),(n∈N*)
,求f2014(x)的解析式; 
(Ⅱ)若f(x)+1≥ax+cosx在[0,π]上恒成立,求实数a的取值范围;
(Ⅲ)证明:f(
π
2n+1
)+f(
2n+1
)+…+f(
(n+1)π
2n+1
)≥
3
2
(n+1)
4(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠BAC在平面α内,PA是α的斜线,若∠PAB=∠PAC=∠BAC=60°,PA=a,则点P到α的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

m2x-1
mx+1
<0
(m≠0)对一切x≥4恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案