精英家教网 > 高中数学 > 题目详情

【题目】为了保障人民群众的身体健康,在预防新型冠状病毒期间,贵阳市市场监督管理局加强了对市场的监管力度,对生产口罩的某工厂利用随机数表对生产的个口罩进行抽样测试是否合格,先将个口罩进行编号,编号分别为;从中抽取个样本,如下提供随机数表的第行到第行:

若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号为(

A.B.C.D.

【答案】D

【解析】

根据随机数表法抽样的定义进行抽取即可.

编号分别为001002...599600

从表中第6行第6列开始向右依次读取3个数据,

第一个数为808>600,不符合条件;

第二个数为436 <600,符合条件;

第三个数为789>600,不符合条件;

第四个数为535<600,符合条件;

第五个数为577<600,符合条件;

第六个数为348<600,符合条件;

第七个数为994>600,不符合条件;

第八个数为837>600,不符合条件;

第九个数为522 <600,符合条件;

得到的第5个样本编号是522.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点EF分别在,且..

1)当时,求异面直线所成角的大小;

2)当平面平面时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象的一条切线为.

1)求实数的值;

2)求证:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出的普通方程及的直角坐标方程;

(2)设点上,点上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度单位长度:,其茎叶图如图所示,则下列描述正确的是( )

A. 甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐

B. 甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐

C. 乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐

D. 乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点C上.

(1)求椭圆C的方程和其“卫星圆”方程;

(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案