精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,设的顶点分别为,圆的外接圆,直线的方程是.

(1)求圆的方程;

(2)证明:直线与圆相交;

(3)若直线被圆截得的弦长为3,求的方程.

【答案】(1);(2)证明见解析;(3).

【解析】

(1)求出边AC、BC的垂直平分线方程,根据圆心M在这2条边的垂直平分线上,可得M(,,再求出半径MC的值,即可得到圆的标准方程.(2)根据直线l经过定点N,而点N在圆的内部,即可得到直线和圆相交.(3)由条件利用弦长公式求得圆心M(,到直线l的距离为d=.再根据据点到直线的距离公式求得m的值,可得直线l的方程.

(1)∵△ABC的顶点分别为A(0,2),B(﹣1,0),C(2,0),故线段BC的垂直平分线方程为x

线段AC的垂直平分线为 yx,再由圆心M在这2条边的垂直平分线上,可得M),

故圆的半径为|MC|=故圆的方程为+

(2)根据直线l的方程是(2+mx+(2m﹣1)y﹣3m﹣1=0(m∈R),即mx+2y﹣3)+2xy﹣1=0,

可得,故直线经过定点N(1,1).

由于MNr,故点N在圆的内部,故圆和直线相交.

(3)∵直线l被圆M截得的弦长为3,

故圆心M)到直线l的距离为d

再根据点到直线的距离公式可得,求得 m=﹣2,或m

故直线l的方程为y=1或x=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为2,则以下四个命题中错误的是

A. 直线为异面直线 B. 平面

C. D. 三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥中,中点,中点,且为正三角形.

(I)求证:平面

(II)求证:平面平面

(III)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的圆锥曲线的标准方程:

(1)抛物线的焦点是椭圆的上顶点;

(2)椭圆的焦距是8,离心率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若在圆上存在点使得成立,则的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题x24x30,则x3”的逆否命题是:x≠3,则x24x3≠0”

B. “x>1”“|x|>0”的充分不必要条件

C. pq为假命题,则pq均为假命题

D. 命题p“x0∈R使得x01<0”,则p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(cosθ,sinθ), =(﹣ );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若两直线的倾斜角分别为 ,则下列四个命题中正确的是( )

A. <,则两直线的斜率:k1 < k2 B. =,则两直线的斜率:k1= k2

C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=

查看答案和解析>>

同步练习册答案