精英家教网 > 高中数学 > 题目详情

【题目】已知函数(a<0).

(Ⅰ)当a=-3时,求f(x)的单调递减区间;

(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;

【答案】(1) 单调递减区间为(-3,-2)和(0,+∞);(2) a<0.

【解析】试题分析:(1)解关于导函数的不等式,得到所求的单调减区间;(2)函数f(x)有且仅有一个零点,即函数图象与x轴有唯一的公共点,利用导函数研究函数图象走势即可.

试题解析:

(Ⅰ)∵a=-3,∴,故

令f′(x)<0,解得-3<x<-2或x>0,

即所求的单调递减区间为(-3,-2)和(0,+∞)

(Ⅱ)∵(x>a)

令f′(x)=0,得x=0或x=a+1

(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.

由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.

当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,

此时函数f(x)有且仅有一个零点.

即当-1<a<0对,f(x)有且仅有一个零点;

(2)当a=-1时,

,∴f(x)在(a,+∞)单调递减,

又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,

故函数f(x)有且仅有一个零点;

(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;

综上所述,所求的范围是a<0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求过点且与曲线相切的直线方程;

(Ⅱ)设,其中为非零实数,若有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设为两个同高的几何体,的体积不相等,在等高处的截面积不恒相等,根据祖暅原理可知,( )

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)设,若的图象与x轴恰有两个不同的交点,求实数a的取值集合.

)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)将函数的图像向右平移个单位得到函数的图像,若,求函数的值域;

(2)已知,分别为中角的对边,且满足,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经营一批进价为30/件的商品在市场试销中发现此商品的销售单价x元与日销售量y件之间有如下所表示的关系.

x

30

40

45

50

y

60

30

15

0

(1)在所给的坐标系中如图根据表格提供的数据描出实数对(xy)的对应点并确定yx的一个函数关系式yf(x)

(2)设经营此商品的日销售利润为P根据上述关系写出P关于x的函数关系式并指出销售单价x为多少时才能获得最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求函数上的值域;

(2)若函数上的最小值为3,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.

(Ⅰ)求证:PN⊥AM;

(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角

最大.

查看答案和解析>>

同步练习册答案