精英家教网 > 高中数学 > 题目详情
设集合S={A0,A1,A2,A3},在S上定义运算⊕为:Ai⊕Aj=Ak,其中k为i+j被 4除的余数,i,j=0,1,2,3.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为   (  )
A.1B.2C.3D.4
当x=A0时,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0
当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0
当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2≠A0
当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0
则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:2个.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、设集合S={A0,A1,A2,A3,A4},在S上定义运算⊙为:Ai⊙Aj=Ak,其中k=|i-j|,i,j=0,1,2,3,4.那么满足条件(Ai⊙Aj)⊙A2=A1(Ai,Aj∈S)的有序数对(i,j)共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

12、设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:Ai⊕Aj=Ak,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={A0,A1,A2,A3},在S上定义运算⊕为:Ai⊕Aj=Ak,其中k为i+j被4除的余数,i,j=0,1,2,3.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={A0,A1,A2,A3},在S上定义运算⊕:Ai⊕Aj=Ak,其中k为i+j被4除的余数,i,j=0,1,2,3,则使关系式(Ai⊕Ai)⊕Aj=A0成立的有序数对(i,j)的组数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合S={a0,a1,a2,a3,a4},在
OB
上定义运算⊕为:ai⊕aj=ak,其中k为i+j被5除的余数,i,j=0,1,2,3,4,则满足关系式:(x⊕x)⊕a2=a0的x(x∈S)的个数为(  )

查看答案和解析>>

同步练习册答案