精英家教网 > 高中数学 > 题目详情
已知△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,∠B=45°,△ABC的面积S=2,那么△ABC的外接圆的直径等于
 
分析:先根据三角形面积公式求得c边的长,进而利用余弦定理求得b,最后根据正弦定理利用
b
sinB
=2R求得三角形外接圆的直径.
解答:解:∵S=
1
2
acsinB=2,
1
2
×1×c×sin45°=2,
∴c=4
2

∴b2=a2+c2-2accosB=1+32-2×1×4
2
×cos45°,
∴b2=25,b=5.
所以△ABC的外接圆的直径等于
b
sinB
=5
2

故答案为5
2
点评:本题主要考查了正弦定理和余弦定理的应用.作为正弦定理和余弦定理的变形公式也应熟练掌握,以便做题时方便使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,AH为BC边上的高,以下结论:①
AH
•(
AC
-
AB
)=0

AB
BC
<0⇒△ABC
为钝角三角形;
AC
AH
|
AH
|
=csinB

BC
•(
AC
-
AB
)=a2
,其中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C的对边分别是a、b、c,且满足b+c=
3
a
,设
m
=[cos(
π
2
+A),-1],
n
=(cosA-
5
4
,-sinA),
m
n
,试求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c.
(1)证明:
a+b
2a+b
c
a+c

(2)证明:不论x取何值总有b2x2+(b2+c2-a2)x+c2>0;
(3)若a>c≥2,证明:
1
a+c+1
-
1
(c+1)(a+1)
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C所对的边长分别为a,b,c且角A,B、C成等差数列,△ABC的面积S=
b2-(a-c)2k
,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,a=
2
,向量
m
=(-1,1)
n
=(cosBcosC,sinBsinC-
2
2
)
,且
m
n

(Ⅰ)求A的大小;
(Ⅱ)当sinB+cos(
12
-C)
取得最大值时,求角B的大小和△ABC的面积.

查看答案和解析>>

同步练习册答案