精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:
(1)直线PA∥平面BDE;
(2)平面BDE⊥平面PCD.

【答案】
(1)证明:连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.

又因为E为PC的中点,

所以OE∥PA.

又因为OE平面BDE,PA平面BDE,

所以直线PA∥平面BDE


(2)证明:因为OE∥PA,PA⊥PD,所以OE⊥PD.

因为OP=OC,E为PC的中点,所以OE⊥PC.

又因为PD平面PCD,PC平面PCD,PC∩PD=P,

所以OE⊥平面PCD.

又因为OE平面BDE,所以平面BDE⊥平面PCD..


【解析】(1)连结OE,说明OE∥PA.然后证明PA∥平面BDE.(2)证明OE⊥PD.OE⊥PC.推出OE⊥平面PCD.然后证明平面BDE⊥平面PCD.
【考点精析】本题主要考查了直线与平面平行的判定和平面与平面垂直的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查乘客的候车情况,公交公司在某为台的名候车乘客中随机抽取人,将他们的候车时间(单位:分钟)作为样本分成组,如下表所示:

组别

候车时间

人数

(1)求这名乘客的平均候车时间;

(2)估计这名候车乘客中候车时间少于分钟的人数;

(3)若从上表第三、四组的人中随机抽取人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区内有两条互相垂直的道路,分别以所在直线为轴、轴建立如图所示的平面直角坐标系,其第一象限有一块空地,其边界是函数的图象,前一段曲线是函数图象的一部分,后一段是一条线段.测得的距离为米,到的距离为米,长为米.现要在此地建一个社区活动中心,平面图为梯形(其中点在曲线上,点在线段上,且为两底边).

(1)求函数的解析式;

(2)当梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,已知,若点是线段上一点(不含端点),过

(1)若外接圆的直径长为,求的值;

(2)求的最小值

(3)问点在何处时,的面积最大?最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线在点处的切线为 轴的交点坐标为,求的值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ln(a x)+bx在点(1,f(1))处的切线是y=0;

(I)求函数f(x)的极值;

(II)恒成立时,求实数m的取值范围(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加数学竞赛决赛的500名同学编号为:001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽的号码为003,这500名学生分别在三个考点考试,从001到200在第一考点,从201到355在第二考点,从356到500在第三考点,则第二考点被抽中的人数为(
A.14
B.15
C.16
D.17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.若直线的参数方程为为参数),曲线的极坐标方程为.

(I)求直线的普通方程与曲线的直角坐标方程;

(II)设直线与曲线相交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

同步练习册答案